精英家教网 > 初中数学 > 题目详情

【题目】如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,求BC的长.

【答案】解:如图,作DG⊥BC于G,作EF⊥AD于F.得矩形ABGD,则BG=AD=2.
∵△ADE的面积为3.
∴EF=3.
根据旋转的性质,可知DE=DC,DE⊥DC,∠CDG=∠EDF.
∴△CDG≌△EDF.
∴EF=GC=3,
∴BC=BG+GC=2+3=5.

【解析】 此题在旋转的基础上,巧妙作辅助线:作DG⊥BC于G,作EF⊥AD于F.构造全等三角形和矩形,根据全等三角形的性质和矩形的性质进行计算.
【考点精析】掌握矩形的性质和旋转的性质是解答本题的根本,需要知道矩形的四个角都是直角,矩形的对角线相等;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,求l沿OC所在直线向下平移多少cm时与⊙O相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.

(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?

(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么丽商场至少需购进多少件A种商品?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是(  )

A.45°
B.30°
C.25°
D.15°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠A=90°,∠AOB=30°,AB=2,△A′OB′可以看作是由△AOB绕点O逆时针旋转60°得到的,求点A′与点B的距离

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数 是关于x的二次函数,求:
(1)满足条件的k的值;
(2)当k为何值时,抛物线有最高点?求出这个最高点;
(3)当k为何值时,函数有最小值?最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】利用等式的性质解下列方程.

(1)y+3=2; (2)-y-2=3; (3)9x=8x-6; (4)8m=4m+1。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的坐标系中,△ABC的三个顶点的坐标依次为A﹣12),B﹣41),C﹣2﹣2

1)请写出△ABC关于x轴对称的点A1B1C1的坐标;

2)请在这个坐标系中作出△ABC关于y轴对称的△A2B2C2

3)计算:△A2B2C2的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABO的顶点A是双曲线y与直线y=-x(k+1)在第二象限的交点.ABx轴于B,且SABO

(1)求这两个函数的解析式;

(2)求直线与双曲线的两个交点AC的坐标和AOC的面积.

查看答案和解析>>

同步练习册答案