精英家教网 > 初中数学 > 题目详情

【题目】嘉淇同学要证明命题两组对边分别相等的四边形是平行四边形是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.

已知:如图1,在四边形ABCD中,BC=AD,AB=

求证:四边形ABCD 四边形.

(1)在方框中填空,以补全已知和求证;

(2)按嘉淇同学的思路写出证明过程;

(3)用文字叙述所证命题的逆命题.

【答案】(1)见解析;(2)见解析

【解析】试题分析:(1)命题的题设为两组对边分别相等的四边形,结论是是平行四边形”,即可得到结论

(2)连接BD,利用SSS定理证明ABD≌△CDB可得ADB=∠DBC,∠ABD=∠CDB,进而可得ABCDADCB,根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形;

(3)把命题两组对边分别相等的四边形是平行四边形的题设和结论对换可得平行四边形两组对边分别相等.

试题解析:解:(1)已知:如图1,在四边形ABCD中,BC=ADAB=CD

求证:四边形ABCD是平行四边形.

(2)证明:连接BD

ABDCDB,∵AB=CDAD=BCBD=DB,∴ABDCDB(SSS),

∴∠ADB=∠DBC,∠ABD=∠CDB,∴ABCDADCB,∴四边形ABCD是平行四边形;

(3)用文字叙述所证命题的逆命题为:

平行四边形两组对边分别相等

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】用大小相同的小立方块搭成一个几何体,使得从正面和上面看到的几何体的形状图如图19所示.

(1)这样的几何体只有一种吗?它最少需要多少个小立方块?最多需要多少个小立方块?

(2)画出这两种情况下从左面看到的几何体的形状图.(各画出一种即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,AB DCBC=b,AB=AC=AD=a,如图24-1-4-11,求BD的长.

图24-1-4-11

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.

(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?

(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么丽商场至少需购进多少件A种商品?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,,像这样,则20条直线相交最多交点的个数是(  )

A. 171 B. 190 C. 210 D. 380

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是(  )

A.45°
B.30°
C.25°
D.15°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数 是关于x的二次函数,求:
(1)满足条件的k的值;
(2)当k为何值时,抛物线有最高点?求出这个最高点;
(3)当k为何值时,函数有最小值?最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一艘载重480 t的船,容积是1 050 m3,现有甲种货物450 m3,乙种货物350 t,而甲种货物每吨的体积为2.5 m3,乙种货物每立方米0.5 t.问:(1)甲、乙两种货物是否都能装上船?如果不能,请说明理由.

(2)为了最大限度地利用船的载质量和容积,两种货物应各装多少吨?

查看答案和解析>>

同步练习册答案