【题目】如图,在Rt△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心,以小于AC的长为半径作弧,分别交AC,AB于点M,N;②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点O;③连接AP,交BC于点E.若CE=3,BE=5,则AC的长为( )
A. 4B. 5C. 6D. 7
科目:初中数学 来源: 题型:
【题目】我们给抛物线y=a(x﹣h)2+k(a≠0)定义一种变换,先作这条抛物线关于原点对称的抛物线,再将得到的对称抛物线向上平移m(m>0)个单位长度,得到新的抛物线ym,则我们称ym为二次函数y=a(x﹣h)2+k(a≠0)的m阶变换.若抛物线M的6阶变换的关系式为.
(1)抛物线M的函数表达式为 ;
(2)若抛物线M的顶点为点A,与r轴相交的两个交点中的左侧交点为点B,则在抛物线上是否存在点P,使点P与直线AB的距离最短?若存在,请求出此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,……按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文具店经销甲、乙两种不同的笔记本.已知:两种笔记本的进价之和为10元,甲种笔记本每本获利2元,乙种笔记本每本获利1元,马阳光同学买4本甲种笔记本和3本乙种笔记本共用了47元.
(1)甲、乙两种笔记本的进价分别是多少元?
(2)该文具店购入这两种笔记本共60本,花费不超过296元,则购买甲种笔记本多少本时该文具店获利最大?
(3)店主经统计发现平均每天可售出甲种笔记本350本和乙种笔记本150本.如果甲种笔记本的售价每提高1元,则每天将少售出50本甲种笔记本;如果乙种笔记本的售价每提高1元,则每天少售出40本乙种笔记本,为使每天获取的利润更多,店主决定把两种笔记本的价格都提高元,在不考虑其他因素的条件下,当定为多少元时,才能使该文具店每天销售甲、乙两种笔记本获取的利润最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,小聪同学利用直尺和圆规完成了如下操作:
①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;
②作直线,交于点.
请你观察图形解答下列问题:
(1)与的位置关系:
直线是线段的____________线;
(2)若,,求矩形的对角线的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.
(1)求证:四边形AOCP是平行四边形;
(2)填空:①当∠ABP= 时,四边形AOCP是菱形;
②连接BP,当∠ABP= 时,PC是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将分别标有数字1,2,3的三张卡片(卡片除所标注数字外其他均相同)洗匀后,背面朝上放在桌面上.
(1)随机地抽取一张,直接写出抽到的卡片所标数字是奇数的概率;
(2)随机地抽取一张,将卡片上标有的数字作为十位上的数字(不放回),再随机地抽取一张卡片,将卡片上标有的数字作为个位上的数字,用列表或树状图的方法求组成的两位数恰好是“32”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是【 】
A.AE=6cm B.
C.当0<t≤10时, D.当t=12s时,△PBQ是等腰三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是
A. 每月上网时间不足25h时,选择A方式最省钱 B. 每月上网费用为60元时,B方式可上网的时间比A方式多
C. 每月上网时间为35h时,选择B方式最省钱 D. 每月上网时间超过70h时,选择C方式最省钱
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com