【题目】将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;
(2)在图2中,若AP1=a,则CQ等于多少?
(3)将图2中△A1B1C绕点C顺时针旋转到△A2B2C(如图3),点P2是A2C与AP1的交点.当旋转角为多少度时,有△AP1C∽△CP1P2?这时线段CP1与P1P2之间存在一个怎样的数量关系?.
【答案】
(1)证明:∵∠B1CB=45°,∠B1CA1=90°,
∴∠B1CQ=∠BCP1=45°;
又B1C=BC,∠B1=∠B,
∴△B1CQ≌△BCP1(ASA)
∴CQ=CP1;
(2)解:如图:作P1D⊥AC于D,
∵∠A=30°,
∴P1D= AP1;
∵∠P1CD=45°,
∴ =sin45°= ,
∴CP1= P1D= AP1;
又AP1=a,CQ=CP1,
∴CQ= a;
(3)解:当∠P1CP2=∠P1AC=30°时,由于∠CP1P2=∠AP1C,则△AP1C∽△CP1P2,
所以将图2中△A1B1C绕点C顺时针旋转30°到△A2B2C时,有△AP1C∽△CP1P2.
这时 = = ,
∴P1P2= CP1.
【解析】(1)根据△A1B1C和△ABC是两个完全一样的三角形,顺时针旋转45°两个条件证明△B1CQ≌△BCP1 , 然后可求证:CP1=CQ;(2)作P1D⊥AC于D,根据∠A=30,∠P1CD=45°分别求出P1D= AP1 , CP1= P1D= AP1 , 而AP1=a可求CQ.(3)当△A P1C∽△CP1P2时,∠P1CP2=∠P1AC=30°,再根据相似求出CP1与P1P2之间存在的数量关系.
【考点精析】认真审题,首先需要了解相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方),还要掌握旋转的性质(①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
(1)求抛物线的解析式;
(2)猜想△EDB的形状并加以证明;
(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进了A,B两种家用电器,相关信息如下表:
家用电器 | 进价(元/件) | 售价(元/件) |
A | m+200 | 1800 |
B | m | 1700 |
已知用6000元购进的A种电器件数与用5000元购进的B种电器件数相同.
(1)求表中m的值.
(2)由于A,B两种家用电器热销,该商店计划用不超过23000元的资金再购进A,B两种电器总件数共20件,且获利不少于13300元.请问:有几种进货方案?哪一种方案才能获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在四边形ABCD中,AD∥BC,∠B=∠C=60°,P、Q同时从B出发,以每秒1单位长度分别沿B﹣A﹣D﹣C和B﹣C﹣D方向运动至相遇时停止,设运动时间为t(秒),△BPQ的面积为S(平方单位),S与t的函数图象如图2所示,则下列结论错误的个数( )
①当t=4秒时,S=4 ②AD=4
③当4≤t≤8时,S=2 t ④当t=9秒时,BP平分四边形ABCD的面积.
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正比例函数y=2x的图象与反比例函数y= 的图象交于A、B两点,过点A作AC垂直x轴于点C,连结BC.若△ABC的面积为2.
(1)求k的值;
(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某粮油超市平时每天都将一定数量的某些品种的粮食进行包装以便出售,已知每天包装大黄米的质量是包装江米质量的倍,且每天包装大黄米和江米的质量之和为45千克.
(1)求平均每天包装大黄米和江米的质量各是多少千克?
(2)为迎接今年6月20日的“端午节”,该超市决定在前20天增加每天包装大黄米和江米的质量,二者的包装质量与天数的变化情况如图所示,节日后又恢复到原来每天的包装质量.分别求出在这20天内每天包装大黄米和江米的质量随天数变化的函数关系式,并写出自变量的取值范围.
(3)假设该超市每天都会将当天包装后的大黄米和江米全部售出,已知大黄米成本价为每千克7.9元,江米成本每千克9.5元,二者包装费用平均每千克均为0.5元,大黄米售价为每千克10元,江米售价为每千克12元,那么在这20天中有哪几天销售大黄米和江米的利润之和大于120元?[总利润=售价额﹣成本﹣包装费用].
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com