精英家教网 > 初中数学 > 题目详情

【题目】如图,正比例函数y=2x的图象与反比例函数y= 的图象交于A、B两点,过点A作AC垂直x轴于点C,连结BC.若△ABC的面积为2.
(1)求k的值;
(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.

【答案】
(1)解:∵反比例函数与正比例函数的图象相交于A、B两点,

∴A、B两点关于原点对称,

∴OA=OB,

∴△BOC的面积=△AOC的面积=2÷2=1,

又∵A是反比例函数y= 图象上的点,且AC⊥x轴于点C,

∴△AOC的面积= |k|,

|k|=1,

∵k>0,

∴k=2.

故这个反比例函数的解析式为y=


(2)x轴上存在一点D,使△ABD为直角三角形.

将y=2x与y= 联立成方程组得:

解得:

∴A(1,2),B(﹣1,﹣2),

①当AD⊥AB时,如图1,

设直线AD的关系式为y=﹣ x+b,

将A(1,2)代入上式得:b=

∴直线AD的关系式为y=﹣ x+

令y=0得:x=5,

∴D(5,0);

②当BD⊥AB时,如图2,

设直线BD的关系式为y=﹣ x+b,

将B(﹣1,﹣2)代入上式得:b=﹣

∴直线AD的关系式为y=﹣ x﹣

令y=0得:x=﹣5,

∴D(﹣5,0);

③当AD⊥BD时,如图3,

∵O为线段AB的中点,

∴OD= AB=OA,

∵A(1,2),

∴OC=1,AC=2,

由勾股定理得:OA= =

∴OD=

∴D( ,0).

根据对称性,当D为直角顶点,且D在x轴负半轴时,D(﹣ ,0).

故x轴上存在一点D,使△ABD为直角三角形,点D的坐标为(5,0)或(﹣5,0)或( ,0)或(﹣ ,0).


【解析】(1)首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,则O为线段AB的中点,故△BOC的面积等于△AOC的面积,都等于1,然后由反比例函数y= 的比例系数k的几何意义,可知△AOC的面积等于 |k|,从而求出k的值;(2)先将y=2x与y= 联立成方程组,求出A、B两点的坐标,然后分三种情况讨论:①当AD⊥AB时,求出直线AD的关系式,令y=0,即可确定D点的坐标;②当BD⊥AB时,求出直线BD的关系式,令y=0,即可确定D点的坐标;③当AD⊥BD时,由O为线段AB的中点,可得OD= AB=OA,然后利用勾股定理求出OA的值,即可求出D点的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,分别位于反比例函数y= ,y= 在第一象限图象上的两点A、B,与原点O在同一直线上,且 =
(1)求反比例函数y= 的表达式;
(2)过点A作x轴的平行线交y= 的图象于点C,连接BC,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;
(2)在图2中,若AP1=a,则CQ等于多少?
(3)将图2中△A1B1C绕点C顺时针旋转到△A2B2C(如图3),点P2是A2C与AP1的交点.当旋转角为多少度时,有△AP1C∽△CP1P2?这时线段CP1与P1P2之间存在一个怎样的数量关系?.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了弘扬优秀传统文化,某中学举办了文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:

组别

分数段

频数(人)

频率

1

50≤x<60

30

0.1

2

60≤x<70

45

0.15

3

70≤x<80

60

n

4

80≤x<90

m

0.4

5

90≤x<100

45

0.15


请根据以图表信息,解答下列问题:
(1)表中m= , n=
(2)补全频数分布直方图;
(3)在得分前5名的同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学参加区级的比赛,用树状图或列表法求选出的两名同学恰好是一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)李老师一共调查了多少名同学?
(2)C类女生有3名,D类男生有1名,将图1条形统计图补充完整;
(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:抛物线y=ax2+bx+c交y轴于点C(0,4),对称轴x=2与x轴交于点D,顶点为M,且DM=OC+OD,
(1)求抛物线的解析式;
(2)设点P(x,y)是第一象限内该抛物线上的一个动点,△PCD的面积为S,求S关于x的函数关系式,写出自变量x的取值范围,并求当x取多少时,S的值最大,最大是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为1的正方形ABCD,点M从点A出发以每秒1个单位长度的速度向点B运动,点N从点A出发以每秒3个单位长度的速度沿A→D→C→B的路径向点B运动,当一个点到达点B时,另一个点也随之停止运动,设△AMN的面积为s,运动时间为t秒,则能大致反映s与t的函数关系的图象是(  )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案