精英家教网 > 初中数学 > 题目详情
1.如图,△ABC是等腰三角形,∠BAC=90°,D为BC延长线上一点,连续AD,以AD为边在AD右侧作正方形ADEF,连续FC、EC,若AC=$\sqrt{2}$,AD=$\sqrt{10}$.
(1)求证:△ABD≌△ACF;
(2)求△CEF的面积.

分析 (1)根据SAS可以证明△ABD≌△ACF.
(2)作AH⊥BC于H,AN⊥CF于N,EM⊥CF于M.首先证明CF⊥BD,再证明△ADH≌△AFN≌△FEM,推出EM=FN=DH=3,CF=FN+CN=4,根据S△EFC=$\frac{1}{2}$•CF•EM计算即可.

解答 (1)证明:∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
∴在△ABD和△ACF中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAF}\\{AD=AF}\end{array}\right.$,
∴△ABD≌△ACF,

(2)解:作AH⊥BC于H,AN⊥CF于N,EM⊥CF于M.
∵△ABD≌△ACF,
∴CF=BD,∠B=∠ACF,
又∵直角△ABC中,∠B+∠ACB=90°,
∴∠ACB+∠ACF=90°,即∠BCF=90°,
∴CF⊥BD.
∴四边形AHCN是矩形,
∵AB=AC=$\sqrt{2}$,AD=$\sqrt{10}$,
∴AH=BH=CN=1,DH=$\sqrt{A{D}^{2}-A{H}^{2}}$=3,
∵AD=AF=EF,∠AHD=∠ANF=∠EMF=90°,∠FAN=∠DAH=∠EFM,
∴△ADH≌△AFN≌△FEM,
∴EM=FN=DH=3,
∴CF=FN+CN=4,
∴S△EFC=$\frac{1}{2}$•CF•EM=$\frac{1}{2}$×4×3=6.

点评 本题考查了全等三角形的判定与性质、正方形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.在△ABC中,a2+b2=25,ab=12,且c=5,则最大边上的高是2.4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式请你观察下列几种简单多面体模型,解答下列问题:

(1)根据上面多面体的模型及表格中的数据:
多面体顶点数(V)面数(F)棱数(E)
四面体446
长方体8612
正八面体6812
你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F-E=2;
(2)一个多面体每个顶点处都有3条棱,多面体的棱数比顶点数大10,则这个多面体的面数是12;
(3)某个玻璃饰品的外形是简单的多面体,它的外表面是由三角形和八边形两种多边形拼接而成,每个顶点处都有3条棱,共有棱36条.若该多面体外表面三角形的个数比八边形的个数的2倍多2,求该多面体外表面三角形的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,抛物线y=ax2+bx+c交x轴于(-1,0)、(3,0)两点,以下四个结论正确的是(用序号表示)(1)(2)(3).
(1)图象的对称轴是直线 x=1
(2)当x>1时,y随x的增大而减小
(3)一元二次方程ax2+bx+c=0的两个根是-1和3
(4)当-1<x<3时,y<0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,在平面直角坐标系中,已知点A(0,1)、点B(0,1+t)、C(0,1-t)(t>0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是$\sqrt{13}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.关于x的方程k2x2-(k+1)2x+k2+1=0至少有一个整数根,则整数k可以是0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,△ABC中,∠AED=∠B,AD=2,DB=4,AE=3,则EC=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.数轴上有A、B、C三点,其中点C为线段AB的中点,O为原点.
(1)若点A所表示的数为-3,点B所表示的数为5,则点C所表示的数为1;
(2)若点A所表示的数为-5,点B所表示的数为-2,则点C所表示的数为-3.5;
(3)若点A所表示的数为-5,点B所表示的数为b,则点C所表示的数为$\frac{b-5}{2}$;(用含b的代数式表示)
(4)若点A所表示的数为a,点B所表示的数为b,则点C所表示的数为$\frac{a+b}{2}$;(用含a、b的代数式表示)
(5)若点A所表示的数为a,点B所表示的数为8,且OC=2,则a的值为-12或-4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:
(1)共抽取了20名同学进行调查,同学们的睡眠时间的中位数是6小时左右,并将条形统计图补充完整;
(2)请你估计年级每个学生的平均睡眠时间约多少小时?

查看答案和解析>>

同步练习册答案