【题目】如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点。
(1)求抛物线的解析式。
(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N若点M的横坐标为m,请用m的代数式表示MN的长。
(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由。
【答案】(1)y=﹣x2+2x+3.(2) ﹣m2+3m(0<m<3).(3) 当m=时,△BNC的面积最大,最大值为.
【解析】试题分析:(1)利用待定系数法求二次函数的解析式;
(2)先求直线BC的解析式,表示出M、N两点的坐标,利用纵坐标的差计算MN的长即可;
(3)根据面积公式得:S△BNC=S△CMN+S△MNB=|MN||OB|,OB的长是定值为3,所以MN的最大值即为面积的最大值,求MN所表示的二次函数的最值即可.
解:(1) ∵抛物线经过点A(1,0),B(3,0),C(0,3)三点,
∴设抛物线的解析式为:y=a(x+1)(x3),
把C(0,3)代入得:3=a(0+1)(03),
a=1,
∴抛物线的解析式:y=-x2+2x+3
(2) 设直线BC的解析式为:y=kx+b,
把B(3,0),C(0,3)代入得: ,
解得:
,
∴直线BC的解析式为y=-x+3,
∴M(m,-m+3),
又∵MN⊥x轴,
∴N(m,-m2+2m+3),
∴MN=(-m2+2m+3)-(-m+3)=-m2+3m(0<m<3)
(3)S△BNC=S△CMN+S△MNB=|MN|·|OB|,
∴当|MN|最大时,△BNC的面积最大,
MN=-m2+3m=-(m-)2+,
所以当m=时,△BNC的面积最大为××3=
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.
(1)求这条抛物线对应的函数解析式;
(2)求直线AB对应的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为( )
A. 2 B. 8 C. 2 D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:
(1)旋转中心是什么?
(2)若旋转角为45°,边CD与A′D′交于F,求DF的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com