【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,顶点为D.
(1)求此抛物线的函数表达式;
(2)以点B为直角顶点作直角三角形BCE,斜边CE与抛物线交于点P,且CP=EP,求点P的坐标;
(3)△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转的角度为α,旋转后的图形为△BO1C1.当旋转后的△BO1C1有一边在直线BD上时,求△BO1C1不在BD上的顶点的坐标.
【答案】(1)y=﹣x2+2x+3;(2)P为( )或();(2)C1的坐标为(3+).
【解析】
(1)将A、B两点的坐标代入抛物线y=﹣x2+bx+c,即可求b、c的值;
(2)过点P作PH⊥x轴于H,PG⊥y轴于G,连接PB,由条件可证得PC=PE=PB,证明△PCG≌△PBH,得出PG=PH,则P点坐标易求;
(3)有两种可能:当BC1在直线BD上时,过点O1作O1M⊥OB,证明△MBO1∽△CBD,得出比例线段可求出BM、O1M的长,则点O1的坐标可求出;当BO1与BD重合时,过点B作x轴的垂线BN,过点C1作C1N⊥BN于点N,易证△NBC1∽△CBD,可求出BN、NC1的长,则C1的坐标可求出.
(1)把A(﹣1,0),B(3,0)两点代入y=﹣x2+bx+c,
得:,
解得b=2,c=3,
∴抛物线的函数表达式为y=﹣x2+2x+3;
(2)如图1,(2)过点P作PH⊥x轴于H,PG⊥y轴于G,连接PB,
设P(m,﹣m2+2m+3),易知C(0,3),
∵OC=OB,
∴∠OCB=∠OBC=45°,
∵PC=PB,
∴∠PBC=∠PCB,
∴∠PCG=∠PBC,
又∵PC=PB,
∴Rt△PCG≌Rt△PBH(AAS),
∴PG=PH,
∴m=﹣m2+2m+3,
解得:m=.
∴P为( )或();
(3)如图2,当BC1在直线BD上时,过点O1作O1M⊥OB,由y=﹣x2+2x+3可得D(1,4).
∴DC=,BC=3,DB=2,
∴DC2+BC2=BD2,
∴△BCD为直角三角形,且∠BCD=90°,
∵∠DBC+∠CBO1=∠CBO1+∠ABO1=45°,
∴∠ABO1=∠DBC,
∴△MBO1∽△CBD,
∴,
即,
∴,,
∴点O1的坐标为(),
如图3,当BO1与BD重合时,过点B作x轴的垂线BN,过点C1作C1N⊥BN于点N,
易证△NBC1∽△CBD,
∴,
∴,
∴,则C1的坐标为().
科目:初中数学 来源: 题型:
【题目】已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.
(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;
(2)求使(x1+1)(x2+1)为正整数的实数a的整数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30度.请回答下列问题:(1)试探究线段BD与线段MF的关系,并简要说明理由;
(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;
(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数图象的顶点为(﹣1,1),且与反比例函数的图象交于点A(﹣3,﹣3)
(1)求二次函数与反比例函数的解析式;
(2)判断原点(0,0)是否在二次函数的图象上,并说明理由;
(3)根据图象直接写出二次函数的值小于反比例函数的值时自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,且AB=10,弦MN的长为8,若弦MN的两端在圆周上滑动,始终与AB相交.记点A,B到MN的距离分别为h1,h2,则|h1﹣h2|等于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某数学兴趣小组准备测量长江某处的宽度AB,他们在AB延长线上选择了一座与B距离为200 m的大楼,在大楼楼顶的观测点C处分别观测点A和点B,利用测角仪测得俯角(从高处观测低处的目标时,视线与水平线所成的锐角)分别为8°和46°.求该处长江的宽度AB.(参考数据:sin8°≈0.14,cos8°≈0.99,tan8°≈0.16,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的中线,过点C作直线CF∥AD.
(问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.
(探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.
(应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件: .
备用图
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com