精英家教网 > 初中数学 > 题目详情

【题目】有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30度.请回答下列问题:(1)试探究线段BD与线段MF的关系,并简要说明理由;

(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;

(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2AD交于点P,A2M2BD交于点N,当NP∥AB时,求平移的距离是多少?

【答案】1BD=MFBD⊥MF.理由见解析;

2β的度数为60°15°

3)平移的距离是(6﹣2cm

【解析】

试题(1)有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),得BD=MF△BAD≌△MAF,推出BD=MF∠ADB=∠AFM=30°,进而可得∠DNM的大小.

2)根据旋转的性质得出结论.

3)求平移的距离是A2A的长度.在矩形PNA2A中,A2A=PN,只要求出PN的长度就行.用△DPN∽△DAB得出:,解得A2A的大小.

试题解析:(1BD=MFBD⊥MF.

延长FMBD于点N

由题意得:△BAD≌△MAF

∴BD=MF∠ADB=∠AFM.

∵∠DMN=∠AMF

∴∠ADB+∠DMN=∠AFM+∠AMF=90°

∴∠DNM=90°

∴BD⊥MF

2)当AK=FK时,∠KAF=∠F=30°

∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°

β=60°

AF=FK时,∠FAK==75°

∴∠BAB1=90°﹣∠FAK=15°

β=15°

∴β的度数为60°15°

3)由题意得矩形PNA2A.设A2A=x,则PN=x

Rt△A2M2F2中,∵F2M2=FM=8

∴A2M2=4A2F2=4∴AF2=4﹣x

∵∠PAF2=90°∠PF2A=30°

∴AP=AF2tan30°=4﹣x

∴PD=AD﹣AP=4﹣4+x

∵NP∥AB

∴∠DNP=∠B

∵∠D=∠D

∴△DPN∽△DAB.

.

解得x=6﹣2.

A2A=6﹣2

答:平移的距离是(6﹣2cm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为等值点.例如点

(1,1),(-2,-2),(),…,都是等值点.已知二次函数

图象上有且只有一个等值点 ,且当mx≤3时,函数 的最小值为-9,最大值为-1,则m的取值范围是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点E是边AC上一点,线段BE垂直于∠BAC的平分线于点D,点M为边BC的中点,连接DM

(1)求证: DMCE

(2)AD6BD8DM2,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.

(1)小宇从甲箱中随机模出一个球,求摸出标有数字是3的球的概率;

(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇略胜一筹.请你用列表法(或画树状图)求小宇略胜一筹的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴、轴分别交于两点,的中点,上一点,四边形是菱形,则的面积为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形、…按如图所示的方式放置.、…和点、…分别在直线轴上,则点的坐标是__________.(为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用(元)与种植面积之间的函数关系如图所示,乙种花卉的种植费用为每平方米100.

(1)直接写出当时,的函数关系式;

(2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AD8AB4,将此矩形折叠,使点B与点D重合,折痕为EF,连接BEDF,以B为原点建立平面直角坐标系,使BCBA边分别在x轴和y轴的正半轴上.

1)试判断四边形BFDE的形状,并说明理由;

2)求直线EF的解析式.

查看答案和解析>>

同步练习册答案