【题目】在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为等值点.例如点
(1,1),(-2,-2),(,),…,都是等值点.已知二次函数的
图象上有且只有一个等值点 ,且当m≤x≤3时,函数 的最小值为-9,最大值为-1,则m的取值范围是__________.
【答案】
【解析】根据等值点的概念令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32-4ac=0,即4ac=9,方程的根为=,从而求得a=-2,c=-,所以函数y=ax2+4x+c-=-2x2+4x-3,根据函数解析式求得顶点坐标,根据y的取值,即可确定x的取值范围.
令ax2+4x+c=x,即ax2+3x+c=0,
由题意,△=32-4ac=0,即4ac=9,
又方程的根为=,
解得a=-2,c=-.
故函数y=ax2+4x+c-=-2x2+4x-3=-2(x-1)2-1,
如图,该函数图象顶点为(1,-1),
由于函数图象在对称轴x=1左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,
且当m≤x≤3时,函数y=-2x2+4x-3的最小值为-9,最大值为-1,
∴-1≤m≤1,
故答案为:-1≤m≤1.
科目:初中数学 来源: 题型:
【题目】小刚与小明在玩数字游戏,现有5张写着不同数字的卡片(如图),小刚请小明按要求抽出卡片,完成下列各问题:
(1)从中取出2张卡片,使这2张卡片上的数字乘积最大,如何抽取?最大值是多少?
(2)从中取出2张卡片,使这2张卡片上的数字相除的商最小,如何抽取?最小值是多少?
(3)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.
下列判断:
①当x>0时,y1>y2;
②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在;
④使得M=1的x值是或.其中正确的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.
(1)正常情况下,甲、乙两人能否履行该合同?为什么?
(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在表盘上12:00时,时针、分针都指向数字12,我们将这一位置称为“标准位置”(图中).小文同学为研究12点分()时,时针与分针的指针位置,将时针记为,分针记为.如:12:30时,时针、分针的位置如图2所示,试解决下列问题:
(1)分针每分钟转动 °;时针每分钟转动 °;
(2)当与在同一直线上时,求的值;
(3)当、、两两所夹的三个角、、中有两个角相等时,试求出所有符合条件的的值.(本小题中所有角的度数均不超过180°)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.
(1)求证:CF是⊙O的切线; (2)若AE=4,tan∠ACD= ,求AB和FC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30度.请回答下列问题:(1)试探究线段BD与线段MF的关系,并简要说明理由;
(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;
(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com