精英家教网 > 初中数学 > 题目详情

【题目】某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.

1)试求yx之间的函数关系式;

2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?

【答案】12)当销售价格定为6元时,每月的利润最大,每月的最大利润为40000

【解析】解:(1)由题意,可设y=kx+b

把(530000),(620000)代入得:,解得:

yx之间的关系式为:

2)设利润为W,则

x=6时,W取得最大值,最大值为40000元。

答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元。

1)利用待定系数法求得yx之间的一次函数关系式

2)根据利润=(售价成本)×售出件数,可得利润W与销售价格x之间的二次函数关系式,然后求出其最大值

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴交于A(3,0),B两点,与y轴交于点C,点M(,5)是抛物线上一点,抛物线与抛物线关于y轴对称,A、B、M关于y轴的对称点分别为点A′、B′、M′

(1)求抛物线C1的解析式;

(2)过点M′M′Ex轴于点E,交直线A′C于点D,x轴上是否存在点P,使得以A′、D. P为顶点的三角形与AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为等值点.例如点

(1,1),(-2,-2),(),…,都是等值点.已知二次函数

图象上有且只有一个等值点 ,且当mx≤3时,函数 的最小值为-9,最大值为-1,则m的取值范围是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某草莓种植大户,今年从草莓上市到销售完需要20天,售价为15元/千克,成本y(元/千克)与第x天成一次函数关系,当x=10时,y=7,当x=15时,y=6.5

1)求成本y(元/千克)与第x天的函数关系式并写出自变量x的取值范围;

2)求第几天每千克的利润w(元)最大?最大利润是多少?(利润=售价-成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.

(发现与证明中,,将沿翻折至,连结.

结论1重叠部分的图形是等腰三角形;

结论2.

试证明以上结论.

(应用与探究)

中,已知,将沿翻折至,连结.若以为顶点的四边形是正方形,求的长.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点E是边AC上一点,线段BE垂直于∠BAC的平分线于点D,点M为边BC的中点,连接DM

(1)求证: DMCE

(2)AD6BD8DM2,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.

(1)小宇从甲箱中随机模出一个球,求摸出标有数字是3的球的概率;

(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇略胜一筹.请你用列表法(或画树状图)求小宇略胜一筹的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是__________

查看答案和解析>>

同步练习册答案