【题目】如图,抛物线与x轴交于A(3,0),B两点,与y轴交于点C,点M(,5)是抛物线上一点,抛物线与抛物线关于y轴对称,点A、B、M关于y轴的对称点分别为点A′、B′、M′
(1)求抛物线C1的解析式;
(2)过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D. P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】(1) (2)P(2,0)或(,0)
【解析】(1)、将点A和点M的坐标代入,利用待定系数法求出函数解析式;(2)、根据函数解析式求出点B和点C的坐标,然后利用轴对称性得出点M′、点A′和点B′的坐标,从而得出直线A′C的直线解析式,根据勾股定理分别求出AC和DA′的长度,设P(m,0),分和两种情况分别求出m的值,得出点P的坐标.
(1)、把A(-3,0),M(,5)代入y=ax2+bx+4得:,
解得:, 所以抛物线C1的解析式为,
(2)、令y=0,则, 解得x1=-3,x2=1, ∴B(1,0),
令x=0,则y=4,∴C(0,4).由题意,知M′(,5),B′(-1,0),A′(3,0),∠CAA′=∠CA′A,∴AB′=2.设直线A′C的解析式为y=px+q.
把A′(3,0),C(0,4)代入得:,解得:,∴y=,
当x=时,y==2,∴D(,2) 由勾股定理得,AC=5, DA′=.
设P(m,0). 当m<3时,此时点P在点A′的左边, 若,即有△DA′P∽△CAB′,
∴, 解得m=2, ∴P(2,0);
若,即有△DA′P∽△B′AC,∴, 解得m=,∴P(,0);
当m>3时,此时点P在点A′的右边,∵∠CB′O≠∠DA′E, ∴∠AB′C≠∠DA′P,
∴此情况,△DA′P与△B′AC不能相似.
综上所述,存在点P(2,0)或(,0)满足条件.
科目:初中数学 来源: 题型:
【题目】如图,点P在CD上,已知∠BAP+∠APD=180°,∠1=∠2,请填写AE∥PF的理由.
解:因为∠BAP+∠APD=180° ,
∠APC+∠APD=180° ,
所以∠BAP=∠APC .
又∠1=∠2 ,
所以∠BAP﹣∠1=∠APC﹣∠2 .
即∠EAP=∠APF.
所以AE∥PF .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小刚与小明在玩数字游戏,现有5张写着不同数字的卡片(如图),小刚请小明按要求抽出卡片,完成下列各问题:
(1)从中取出2张卡片,使这2张卡片上的数字乘积最大,如何抽取?最大值是多少?
(2)从中取出2张卡片,使这2张卡片上的数字相除的商最小,如何抽取?最小值是多少?
(3)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.
(1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数阵是由50个偶数排成的.
(1)在数阵中任意做一类似于图中的框,设其中最小的数为x,那么其他3个数怎样表示?
(2)如果这四个数的和是172,能否求出这四个数?
(3)如果扩充数阵的数据,框中的四个数的和可以是2019吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.
下列判断:
①当x>0时,y1>y2;
②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在;
④使得M=1的x值是或.其中正确的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.
(1)正常情况下,甲、乙两人能否履行该合同?为什么?
(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com