精英家教网 > 初中数学 > 题目详情

【题目】在直角坐标系xOy中,直线l的参数方程为 ,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为
(1)写出直线l的普通方程及圆C 的直角坐标方程;
(2)点P是直线l上的,求点P 的坐标,使P 到圆心C 的距离最小.

【答案】
(1)解:∵在直角坐标系xOy中,直线l的参数方程为

∴t=x﹣3,∴y=

整理得直线l的普通方程为 =0,

,∴

∴圆C的直角坐标方程为:


(2)解:圆C: 的圆心坐标C(0, ).

∵点P在直线l: =0上,设P(3+t, ),

则|PC|= =

∴t=0时,|PC|最小,此时P(3,0)


【解析】(1)由已知得t=x﹣3,从而y= ,由此能求出直线l的普通方程;由 ,得 ,由此能求出圆C的直角坐标方程.(2)圆C圆心坐标C(0, ),设P(3+t, ),由此利用两点间距离公式能求出点P的坐标,使P到圆心C 的距离最小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于(  )

A.60
B.80
C.30
D.40

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为( )
A.x=1,y=3
B.x=3,y=2
C.x=4,y=1
D.x=2,y=3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下2×2列联表:

男生

女生

合计

挑同桌

30

40

70

不挑同桌

20

10

30

总计

50

50

100

(Ⅰ)从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深度采访,求这3名学生中至少有2名要挑同桌的概率;
(Ⅱ)根据以上2×2列联表,是否有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关?
下面的临界值表供参考:

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式: ,其中n=a+b+c+d)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数列{an}中,a2=
(1)若数列{an}满足2an﹣an+1=0,求an
(2)若a4= ,且数列{(2n﹣1)an+1}是等差数列,求数列{ }的前n项和Tn

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知F1、F2分别为双曲线C: =1的左、右焦点,P为双曲线C右支上一点,且|PF1|=2|PF2|,则△PF1F2外接圆的面积为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知椭圆E: =1(a>b>0)的左焦点F1(﹣ ,0),若椭圆上存在一点D,满足以椭圆短轴为直径的圆与线段DF1相切于线段DF1的中点F
(1)求椭圆E的方程;
(2)过坐标原点O的直线交椭圆W: =1于P、A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连结AC并延长交椭圆W于B,求证:PA⊥PB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S=1.5(单位:升),则输入k的值为(
A.4.5
B.6
C.7.5
D.9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】己知抛物线C1:x2=2py(p>0)与圆C2:x2+y2=5的两个交点之间的距离为4. (Ⅰ)求p的值;
(Ⅱ)设过抛物线C1的焦点F且斜率为k的直线与抛物线交于A,B两点,与圆C2交于C,D两点,当k∈[0,1]时,求|AB||CD|的取值范围.

查看答案和解析>>

同步练习册答案