精英家教网 > 初中数学 > 题目详情

【题目】通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下2×2列联表:

男生

女生

合计

挑同桌

30

40

70

不挑同桌

20

10

30

总计

50

50

100

(Ⅰ)从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深度采访,求这3名学生中至少有2名要挑同桌的概率;
(Ⅱ)根据以上2×2列联表,是否有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关?
下面的临界值表供参考:

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式: ,其中n=a+b+c+d)

【答案】解:(Ⅰ)根据分层抽样方法抽取容量为5的样本,挑同桌有3人,记为A、B、C, 不挑同桌有2人,记为d、e;
从这5人中随机选取3人,基本事件为
ABC,ABd,ABe,ACd,ACe,Ade,BCd,BCe,Bde,Cde共10种;
这3名学生中至少有2名要挑同桌的事件为概率为
ABC,ABd,ABe,ACd,ACe,BCd,BCe,共7种;
故所求的概率为P=
(Ⅱ)根据以上2×2列联表,计算观测值
K2= ≈4.7619>3.841,
对照临界值表知,有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关
【解析】(Ⅰ)根据分层抽样原理求出样本中挑同桌有3人,不挑同桌有2人,利用列举法求出基本事件数,计算对应的概率值;(Ⅱ)根据2×2列联表计算观测值,对照临界值表得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】直线y=kx+b与抛物线y= x2交于A(x1 , y1)、B(x2 , y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一动点,则PA+PC的最小值为( ).

A.
B.
C.
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给出下列四个命题: ①回归直线 恒过样本中心点
②“x=6”是“x2﹣5x﹣6=0”的必要不充分条件;
③“x0∈R,使得x02+2x0+3<0”的否定是“对x∈R,均有x2+2x+3>0”;
④“命题p∨q”为真命题,则“命题p∧q”也是真命题.
其中真命题的个数是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=1+2cosxcos(x+3φ)是偶函数,其中φ∈(0, ),则下列关于函数g(x)=cos(2x﹣φ)的正确描述是(
A.g(x)在区间[﹣ ]上的最小值为﹣1.
B.g(x)的图象可由函数f(x)向上平移2个单位,在向右平移 个单位得到.
C.g(x)的图象可由函数f(x)的图象先向左平移 个单位得到.
D.g(x)的图象可由函数f(x)的图象先向右平移 个单位得到.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 ,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为
(1)写出直线l的普通方程及圆C 的直角坐标方程;
(2)点P是直线l上的,求点P 的坐标,使P 到圆心C 的距离最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《张邱建算经》是中国古代数学史上的杰作,该书中有首古民谣记载了一数列问题:“南山一棵竹,竹尾风割断,剩下三十节,一节一个圈.头节高五寸 , 头圈一尺三 . 逐节多三分 , 逐圈少分三 . 一蚁往上爬,遇圈则绕圈.爬到竹子顶,行程是多远?”(注释:①第一节的高度为0.5尺;②第一圈的周长为1.3尺;③每节比其下面的一节多0.03尺;④每圈周长比其下面的一圈少0.013尺) 问:此民谣提出的问题的答案是(
A.72.705尺
B.61.395尺
C.61.905尺
D.73.995尺

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设函数f(x)=|x+ |+|x﹣2m|(m>0). (Ⅰ)求证:f(x)≥8恒成立;
(Ⅱ)求使得不等式f(1)>10成立的实数m的取值范围.

查看答案和解析>>

同步练习册答案