精英家教网 > 初中数学 > 题目详情

【题目】已知椭圆E: =1(a>b>0)的左焦点F1(﹣ ,0),若椭圆上存在一点D,满足以椭圆短轴为直径的圆与线段DF1相切于线段DF1的中点F
(1)求椭圆E的方程;
(2)过坐标原点O的直线交椭圆W: =1于P、A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连结AC并延长交椭圆W于B,求证:PA⊥PB.

【答案】
(1)

解:连接DF2,FO(O为原点,F2为右焦点),由题意知:椭圆的右焦点为

因为FO是△DF1F2的中位线,且DF1⊥FO,所以|DF2|=2|FO|=2b,

所以|DF1|=2a﹣|DF2|=2a﹣2b,故

在Rt△FOF1中,

即b2+(a﹣b)2=c2=5,又b2+5=a2,解得a2=9,b2=4,

所以椭圆E的方程为


(2)

解:由(Ⅰ)得椭圆W的方程为

设P(m,n),则A(﹣m,﹣n),C(m,0),

,直线

联立方程组 ,化简得

因为xA=﹣m,所以 ,则

所以

则kPAkPB=﹣1,即PA⊥PB.


【解析】(I)用a,b,c表示出△OF1F的边长,利用勾股定理列方程解出a,b,即可;(II)设P(m,n),用m,n表示出直线AC的方程,求出B点坐标,计算PA,PB的斜率即可得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列函数中,满足y的值随x的值增大而增大的是(  )
A.y=﹣2x
B.y=3x﹣1
C.y=
D.y=x2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给出下列四个命题: ①回归直线 恒过样本中心点
②“x=6”是“x2﹣5x﹣6=0”的必要不充分条件;
③“x0∈R,使得x02+2x0+3<0”的否定是“对x∈R,均有x2+2x+3>0”;
④“命题p∨q”为真命题,则“命题p∧q”也是真命题.
其中真命题的个数是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 ,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为
(1)写出直线l的普通方程及圆C 的直角坐标方程;
(2)点P是直线l上的,求点P 的坐标,使P 到圆心C 的距离最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知 ,数列 的前n项和为Sn , 数列{bn}的通项公式为bn=n﹣8,则bnSn的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《张邱建算经》是中国古代数学史上的杰作,该书中有首古民谣记载了一数列问题:“南山一棵竹,竹尾风割断,剩下三十节,一节一个圈.头节高五寸 , 头圈一尺三 . 逐节多三分 , 逐圈少分三 . 一蚁往上爬,遇圈则绕圈.爬到竹子顶,行程是多远?”(注释:①第一节的高度为0.5尺;②第一圈的周长为1.3尺;③每节比其下面的一节多0.03尺;④每圈周长比其下面的一圈少0.013尺) 问:此民谣提出的问题的答案是(
A.72.705尺
B.61.395尺
C.61.905尺
D.73.995尺

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,BD=2AD=8,AB=4
(Ⅰ)证明:平面PBD⊥平面PAD;
(Ⅱ)求二面角B﹣PA﹣D的余弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知f(x)=(x2﹣2ax)lnx+2ax﹣ x2 , 其中a∈R.
(1)若a=0,且曲线f(x)在x=t处的切线l过原点,求直线l的方程;
(2)求f(x)的极值;
(3)若函数f(x)有两个极值点x1 , x2(x1<x2),证明f(x1)+f(x2)< a2+3a.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为: ,以O为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求曲线C的极坐标方程;
(Ⅱ)已知直线l1 ,射线 与曲线C的交点为P,l2与直线l1的交点为Q,求线段PQ的长.

查看答案和解析>>

同步练习册答案