精英家教网 > 初中数学 > 题目详情
2.如图,菱形ABCD中,∠D=60°,E为线段CD上一点,连接BE,将线段BC沿直线BE翻折交对角线AC于点F,连接EF,则∠FEB的角度为30°.

分析 如图,作∠ACB的平分线CP交BE于P,连接PF.首先证明点P是△BCF的内心,推出∠FPO=60°,∠OCP=30°,由△FOP∽△EOC,推出$\frac{FO}{EO}$=$\frac{OP}{OC}$,推出$\frac{OF}{OP}$=$\frac{EO}{OC}$,由∠FOE=∠POC,推出△EOF∽△COP,推出∠FEO=∠OCP=30°.

解答 解:如图,作∠ACB的平分线CP交BE于P,连接PF.

∵四边形ABCD是菱形,
∴AB=BC=CD=AD,∠D=∠ABC=60°,
∴△ABC,△ADC都是等边三角形,
∴∠ACB=∠ACD=60°,
∵BP平分∠FBC,
∴点P是△BCF的内心,
∴PF平分∠BFC,∠OCP=30°,
∵∠CBF+∠CFB=120°,
∴∠FPO=∠PFB+∠PBF=$\frac{1}{2}$∠BFC+$\frac{1}{2}$∠FBC=$\frac{1}{2}$(∠BFC+∠CBF)=60°,
∴∠FPO=∠OCE,∵∠FOP=∠EOP,
∴△FOP∽△EOC,
∴$\frac{FO}{EO}$=$\frac{OP}{OC}$,
∴$\frac{OF}{OP}$=$\frac{EO}{OC}$,∵∠FOE=∠POC,
∴△EOF∽△COP,
∴∠FEO=∠OCP=30°,即∠FEB=30°,
故答案为30°.

点评 本题考查翻折变换、菱形的性质、相似三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.在下列平面汽车图标中,不是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于C点,点D(1,-4)是抛物线顶点,点P是直线BC下方的抛物线上一动点.

(1)这个二次函数的表达式为y=x2-2x-3.
(2)设直线BC的解析式为y=kx+m,则不等式x2+bx+c≥kx+m的解集为x<0或>3.
(3)连结PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(4)当四边形 ABPC的面积最大时,求出此时P点的坐标和四边形ABPC的最大面积.
(5)若把条件“点P是直线BC下方的抛物线上一动点.”改为“点P是抛物线上的任一动点.”,其它条件不变,当以P、C、D、B为顶点的四边形为梯形时,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图1,在平面直角坐标系中,抛物线 y=$\frac{\sqrt{3}}{3}$x2-$\frac{8}{3}$x-$\sqrt{3}$与x轴交于A、B、两点(点A在点B的左侧),与y轴交于点C.
(1)判断△ABC形状,并说明理由.
(2)在抛物线第四象限上有一点,它关于x轴的对称点记为点P,点M是直线BC上的一动点,当△PBC的面积最大时,求PM+$\frac{\sqrt{10}}{10}$MC的最小值;
(3)如图2,点K为抛物线的顶点,点D在抛物线对称轴上且纵坐标为$\sqrt{3}$,对称轴右侧的抛物线上有一动点E,过点E作EH∥CK,交对称轴于点H,延长HE至点F,使得EF=$\frac{5\sqrt{3}}{3}$,在平面内找一点Q,使得以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线 是对称轴,请问是否存在这样的点Q,若存在请直接写出点E的横坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.1纳米=10-8米,将0.000306纳米用科学记数法表示为(  )
A.0.306×10-3B.3.06×10-3C.30.6×10-14D.3.06×10-13

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图所示,点M是矩形ABCD的边AD的中点,P是BC边上一动点,PE⊥MC,PF⊥BM,垂足分别为E,F
(1)当矩形ABCD的长与宽满足什么条件时,四边形PEMF为矩形?
(2)在(1)中,当点P运动到什么位置时,矩形PEMF变为正方形?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.已知,在四边形ABCD中,∠A=∠B=90°,要使四边形ABCD为矩形,那么需要添加的一个条件是(  )
A.AB=BCB.AD=BCC.AD=ABD.BC=CD

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,抛物线y=$\frac{1}{8}$x2+3mx+18m2-m与x轴交于A(x1,0),B(x2,0)两点,且x1≠x2,与y轴交于点C.
(1)求m的取值范围;
(2)若OA+OB=3OC,求抛物线的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,在Rt△ABC中,∠C=90°,若a=4,c=5,则tanA=$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案