【题目】如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.
(1)请你写出图中所有的等腰三角形;
(2)请你判断AD与BE垂直吗?并说明理由.
(3)如果BC=10,求AB+AE的长.
【答案】(1)△ABC,△ABD,△ADE,△EDC(2)垂直,理由见解析(3)10.
【解析】
(1)根据等腰三角形的定义判断;
(2)由题意可知△ABE关于BE与△DBE对称,可得出BE⊥AD;
(3)根据(2),可知△ABE关于BE与△DBE对称,且△DEC为等腰直角三角形,可推出AB+AE=BD+DC=BC=10.
(1)△ABC等腰直角三角形,BE为角平分线;易证△ABE≌△DBE,即AB=BD,AE=DE,所以△ABD和△ADE均为等腰三角形;∠C=45°,ED⊥DC,△EDC也符合题意,综上所述符合题意的三角形为有△ABC,△ABD,△ADE,△EDC;
(2)AD与BE垂直.
证明:由BE为∠ABC的平分线,
知∠ABE=∠DBE,∠BAE=∠BDE=90°,AE=DE,
∴△ABE沿BE折叠,一定与△DBE重合.
∵A、D是对称点,
∴AD⊥BE;
(3)∵△ABD,△ADE,△EDC是等腰三角形
∴AB=BD,AE=DE=DC,
∴AB+AE=BD+DC=BC=10.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=4,BC=3,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.
(1)求修建一个足球场和一个篮球场各需多少万元?
(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE; ③△ADE的周长=AB+AC;④BF=CF.其中正确的是______.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读材料)
因式分解:.
解:将“”看成整体,令,则原式.
再将“”还原,原式.
上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法.
(问题解决)
(1)因式分解:;
(2)因式分解:;
(3)证明:若为正整数,则代数式的值一定是某个整数的平方.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知Rt△ABC中,AC=4,BC=3,∠ACB=90°,以AC为一边在Rt△ABC外部作等腰直角三角形ACD,则线段BD的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,
(1)请你利用直尺和圆规完成如下操作:
①作△ABC的角平分线AD;
②作边AB的垂直平分线EF,EF与AD相交于点P;
③连接PB,PC.
请你观察图形解答下列问题:
(2)线段PA,PB,PC之间的数量关系是 ;请说明理由.
(3)若∠ABC=70°,求∠BPC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是( )
A. 6→3 B. 7→16 C. 7→8 D. 6→15
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com