精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数的图像经过两点.

1)求该函数的解析式;

2)若该二次函数图像与轴交于两点,求的面积;

3)若点在二次函数图像的对称轴上,当周长最短时,求点的坐标.

【答案】1;(26;(3

【解析】

(1)将M,N两点代入求出b,c值,即可确定表达式;

2)令y=0x的值,即可确定AB两点的坐标,求线段AB长,由三角形面积公式求解.

3)求出抛物线的对称轴,确定M关于对称轴的对称点G的坐标,直线NG与对称轴的交点即为所求P点,利用一次函数求出P点坐标.

解:将点代入中得,

解得,

yx之间的函数关系式为

2)如图,当y=0时,

x1=3,x2= -1,

A(-1,0),B(3,0),

AB=4,

SABM= .

的面积是6.

3)如图,抛物线的对称轴为直线

关于直线x=1的对称点坐标为G(23),

PM=PG,

MG交抛物线对称轴于点P,此时NP+PM=NP+PG最小,即周长最短.

设直线NG的表达式为y=mx+n,

N(-2,-5),G(2,3)代入得,

解得,

y=2m-1,

P点坐标为(1,1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,正方形ABCD在直角坐标系中,其中AB边在y轴上,其余各边均与坐标轴平行,直线lyx5沿y轴的正方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),mt的函数图象如图2所示,则图2b的值为(  )

A.3B.5C.6D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCABBC,对角线ACBD交于点OBD平分∠ABC,过点DDEBC,交BC的延长线于点E,连接OE

1)求证:四边形ABCD是菱形;

2)若DC2AC4,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD及射线DC分别交于点F、Q

(1)若BP=,求BAP的度数;

(2)若点P在线段BC上,过点F作FGCD,垂足为G,当FGC≌△QCP时,求PC的长;

(3)以PQ为直径作M.

①判断FC和M的位置关系,并说明理由;

②当直线BD与M相切时,直接写出PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线)与轴分别交于两点,以为边在直线的上方作正方形,反比例函数的图象分别过点和点.,则的值为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙0的直径,点C在⊙0上,D是中点,若∠BAC=70°,求∠C.

下面是小雯的解法,请帮他补充完整:

解:在⊙0中,

∵D是的中点

∴BD=CD.

∴∠1=∠2( )(填推理的依据).

∵∠BAC=70°,

∴∠2=35°.

∵AB是⊙0的直径,

∴∠ADB=90°( )(填推理的依据).

∴∠B=90°-∠2=55°.

∵A、B、C、D四个点都在⊙0上,

∴∠C+∠B=180°( )(填推理的依据).

∴∠C=180°-∠B= (填计算结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A2y1),B(﹣3y2),C(﹣5y3)三个点都在反比例函数的图象上,比较y1y2y3的大小,则下列各式正确的是(  )

A.y1y2y3B.y2y3y1C.y1y3y2D.y3y2y1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(  )

A.三角形的外心一定在三角形的外部B.三角形的内心到三个顶点的距离相等

C.外心和内心重合的三角形一定是等边三角形D.直角三角形内心到两锐角顶点连线的夹角为125°

查看答案和解析>>

同步练习册答案