【题目】如图,AB是⊙0的直径,点C在⊙0上,D是中点,若∠BAC=70°,求∠C.
下面是小雯的解法,请帮他补充完整:
解:在⊙0中,
∵D是的中点
∴BD=CD.
∴∠1=∠2( )(填推理的依据).
∵∠BAC=70°,
∴∠2=35°.
∵AB是⊙0的直径,
∴∠ADB=90°( )(填推理的依据).
∴∠B=90°-∠2=55°.
∵A、B、C、D四个点都在⊙0上,
∴∠C+∠B=180°( )(填推理的依据).
∴∠C=180°-∠B= (填计算结果).
科目:初中数学 来源: 题型:
【题目】如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.
请你根据统计图提供的信息完成下列填空:
(1)这一周访问该网站一共有 万人次;
(2)周日学生访问该网站有 万人次;
(3)周六到周日学生访问该网站的日平均增长率为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象经过点A(1,0).
(1)当b=2,c=﹣3时,求二次函数的解析式及二次函数最小值;
(2)二次函数的图象经过点B(m,e),C(3﹣m,e)且对任意实数x,函数值y都不小于﹣.
①求此时二次函数的解析式;
②若次函数与y轴交于点D,在对称轴上存在一点P,使得PA+PD有最小值,求点P坐标及PA+PD的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图像经过,两点.
(1)求该函数的解析式;
(2)若该二次函数图像与轴交于、两点,求的面积;
(3)若点在二次函数图像的对称轴上,当周长最短时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下材料,并按要求完成相应地任务:
莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则.
如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.
下面是该定理的证明过程(部分):
延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.
∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),
∴△MDI∽△ANI,
∴,
∴①,
如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF,
∵DE是⊙O的直径,∴∠DBE=90°,
∵⊙I与AB相切于点F,∴∠AFI=90°,
∴∠DBE=∠IFA,
∵∠BAD=∠E(同弧所对圆周角相等),
∴△AIF∽△EDB,
∴,∴②,
任务:(1)观察发现:, (用含R,d的代数式表示);
(2)请判断BD和ID的数量关系,并说明理由;
(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的二次函数y=ax2-(2a+2)x+b(a≠0)在x=0和x=6时函数值相等.
(1)求a的值;
(2)若该二次函数的图象与直线y=-2x的一个交点为(2,m),求它的解析式;
(3)在(2)的条件下,直线y=-2x-4与x轴,y轴分别交于A,B,将线段AB向右平移n(n>0)个单位,同时将该二次函数在2≤x≤7的部分向左平移n个单位后得到的图象记为G,请结合图象直接回答,当图象G与平移后的线段有公共点时,n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如下表所示,有A、B两组数:
第1个数 | 第2个数 | 第3个数 | 第4个数 | …… | 第9个数 | …… | 第n个数 | |
A组 | ﹣6 | ﹣5 | ﹣2 | …… | 58 | …… | n2﹣2n﹣5 | |
B组 | 1 | 4 | 7 | 10 | …… | 25 | …… |
(1)A组第4个数是 ;
(2)用含n的代数式表示B组第n个数是 ,并简述理由;
(3)在这两组数中,是否存在同一列上的两个数相等,请说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点,直线与轴交于点与轴左侧抛物线交于点,直线与轴右侧抛物线交于点.
(1)求抛物线的解析式;
(2)点是直线上方抛物线上一动点,求面积的最大值;
(3)点是抛物线上一动点,点是抛物线对称轴上一动点,请直接写出以点为顶点的四边形是平行四边形时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的正方形网格中,点A(3,4),⊙A的半径为.
(1)请在网格中画出⊙A;
(2)请标出⊙A上的三个相邻的格点B1、B2、B3,连接B1B3,则由和弦B1B3围成的弓形面积为 ;
(3)线段CD,点C(6,4)、D(5,1),在⊙A上有一点M,使△CDM的面积最大,请找到此时的点M(保留必要辅助格点N).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com