精英家教网 > 初中数学 > 题目详情

【题目】阅读以下材料,并按要求完成相应地任务:

莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,Rr分别为外接圆和内切圆的半径,OI分别为其外心和内心,则.

如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.

下面是该定理的证明过程(部分):

延长AI⊙O于点D,过点I⊙O的直径MN,连接DMAN.

∵∠D=∠N∠DMI=∠NAI(同弧所对的圆周角相等)

∴△MDI∽△ANI

①,

如图2,在图1(隐去MDAN)的基础上作⊙O的直径DE,连接BEBDBIIF

∵DE⊙O的直径,∴∠DBE=90°

∵⊙IAB相切于点F∴∠AFI=90°

∴∠DBE=∠IFA

∵∠BAD=∠E(同弧所对圆周角相等)

∴△AIF∽△EDB

②,

任务:(1)观察发现: (用含Rd的代数式表示)

(2)请判断BDID的数量关系,并说明理由;

(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;

(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为 cm.

【答案】(1)R-d(2)BD=ID,理由见解析;(3)见解析;(4).

【解析】

(1)直接观察可得;

(2)由三角形内心的性质可得∠BAD=CAD,∠CBI=ABI,由圆周角定理可得∠DBC=CAD,再根据三角形外角的性质即可求得∠BID=DBI,继而可证得BD=ID

(3)应用(1)(2)结论即可;

(4)直接代入结论进行计算即可.

(1)OIN三点共线,

OI+INON

INONOIRd

故答案为:Rd

(2)BD=ID,理由如下:

I△ABC的内心,

∴∠BAD=∠CAD∠CBI=∠ABI

∵∠DBC=∠CAD∠BID=∠BAD+∠ABI∠DBI=∠DBC+∠CBI

∴∠BID=∠DBI

∴BD=ID

(3)(2)知:BD=ID

DE·IF=IM·IN

(4)(3)知:

R=5r=2代入得:

d>0

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,,点是斜边的中点.点从点出发以的速度向点运动,点同时从点出发以一定的速度沿射线方向运动,规定当点到终点时停止运动.设运动的时间为秒,连接

1)填空:______

2)当且点运动的速度也是时,求证:

3)若动点的速度沿射线方向运动,在点、点运动过程中,如果存在某个时间,使得的面积是面积的两倍,请你求出时间的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°BD平分∠ABC.求作⊙O,使得点O在边AB上,且⊙O经过BD两点;并证明AC与⊙O相切.(尺规作图,保留作图痕迹,不写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】网络比网络的传输速度快10倍以上,因此人们对产品充满期待.华为集团计划2020年元月开始销售一款产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第个月(为正整数)销售价格为/台,满足如图所示的一次函数关系:且第个月的销售数量(万台)与的关系为.

1)该产品第6个月每台销售价格为______元;

2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?

3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?

4)若每销售1万台该产品需要在销售额中扣除元推广费用,当时销售利润最大值为22500万元时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙0的直径,点C在⊙0上,D是中点,若∠BAC=70°,求∠C.

下面是小雯的解法,请帮他补充完整:

解:在⊙0中,

∵D是的中点

∴BD=CD.

∴∠1=∠2( )(填推理的依据).

∵∠BAC=70°,

∴∠2=35°.

∵AB是⊙0的直径,

∴∠ADB=90°( )(填推理的依据).

∴∠B=90°-∠2=55°.

∵A、B、C、D四个点都在⊙0上,

∴∠C+∠B=180°( )(填推理的依据).

∴∠C=180°-∠B= (填计算结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系x0y中,对于图形G,若存在一个正方形γ,这个正方形的某条边与x轴垂直,且图形G上的所有的点都在该正方形的内部或者边上,则称该正方形γ为图形G的一个正覆盖.很显然,如果图形G存在一个正覆盖,则它的正覆盖有无数个,我们将图形G的所有正覆盖中边长最小的一个,称为它的紧覆盖.如图所示,图形G为三条线段和一个圆弧组成的封闭图形,图中的三个正方形均为图形G的正覆盖,其中正方形ABCD就是图形G的紧覆盖.

(1)对于半径为2的⊙0,它的紧覆盖的边长为 .

(2)如图1,点P为直线y=-2x+3上一动点,若线段OP的紧覆盖的边长为2,求点P的坐标;

(3)如图2,直线y=3x+3与x轴,y轴分别交于A,B,

①以0为圆心,r为半径的⊙0与线段AB有公共点,且由⊙0与线段AB组成的图形G的紧覆盖的边长小于4,直接写出r的取值范围;

②若在抛物线y=ax2+2ax-2(a≠0)上存在点C,使得△ABC的紧覆盖的边长为3,直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形的边长是,动点同时从点出发,以的速度分别沿运动,设运动时间为,四边形的面积为,则的函数关系图象大致为(

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:点PABC的边上,且与ABC的顶点不重合.若满足PABPBCPAC至少有一个三角形与ABC相似(但不全等),则称点PABC的自相似点.如图①,已知点ABC的坐标分别为(10)、(30)、(01).

1)若点P的坐标为(20),求证点PABC的自相似点;

2)求除点(20)外ABC所有自相似点的坐标;

3)如图②,过点BDBBC交直线AC于点D,在直线AC上是否存在点G,使GBDGBC有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案