精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,点是斜边的中点.点从点出发以的速度向点运动,点同时从点出发以一定的速度沿射线方向运动,规定当点到终点时停止运动.设运动的时间为秒,连接

1)填空:______

2)当且点运动的速度也是时,求证:

3)若动点的速度沿射线方向运动,在点、点运动过程中,如果存在某个时间,使得的面积是面积的两倍,请你求出时间的值.

【答案】18;(2)见解析;(34.

【解析】

1)直接可求ABC的面积;
2)连接CD,根据等腰直角三角形的性质可求:∠A=B=ACD=DCB=45°,即BD=CD,且BE=CF,即可证CDF≌△BDE,可得DE=DF
3)分ADF的面积是BDE的面积的两倍和BDEADF的面积的2倍两种情况讨论,根据题意列出方程可求x的值.

解:(1)∵SABC=AC×BC
SABC=×4×4=8cm2
故答案为:8
2)如图:连接CD

AC=BCDAB中点
CD平分∠ACB
又∵∠ACB=90°
∴∠A=B=ACD=DCB=45°
CD=BD
依题意得:BE=CF
∴在CDFBDE


∴△CDF≌△BDESAS
DE=DF
3)如图:过点DDMBC于点MDNAC于点N

AD=BD,∠A=B=45°,∠AND=DMB=90°
∴△ADN≌△BDMAAS
DN=DM
SADF=2SBDE
×AF×DN=2××BE×DM
|4-3x|=2x
x1=4x2=
2SADF=SBDE
×AF×DN=×BE×DM
2×|4-3x|=x
x1=x2=
综上所述:x=4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】嘉祥中学为加强现代信息技术教学,拟投资建一个初级计算机房和一个高级计算机房,每个计算机房只配置1台教师用机,若干台学生用机.其中初级机房教师用机每台8000元,学生用机每台3500元,高级机房教师用机每台11500元,学生用机每台7000元.已知两机房购买计算机的总钱数相等,且每个机房购买计算机的总钱数不少于20万元也不超过21万元.则该校拟建的初级机房,高级机房各应有多少台计算机?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在ABC中,BFCF是角平分线,DEBC,分别交ABAC于点DEDE经过点F.结论:①△BDFCEF都是等腰三角形;②DE=BD+CE③△ADE的周长=AB+ACBF=CF.其中正确的是______(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E为菱形ABCD的边CD上任意点,将CE绕点E旋转一定角度后与AD平行.

(1)如图,若CE旋转后得到PENE,试判断下列结论是否成立?

BD平分AN,   

BDAP,   (填写成立不成立”);

(2)证明(1)中你的判断.

(3)若∠ABC=60°,AB=BM=+1,请直接写出CE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.

(1)用树状图或列表等方法列出所有可能出现的结果;

(2)求两次摸到的球的颜色不同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有A、B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3,B布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.

(1)用(m,n)表示小明取球时m与n的对应值,画出树状图(或列表),写出(m,n)的所有取值;

(2)求关于x的一元二次方程没有实数根的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCB90°AB4BC2AC为边作△ACEACE90°AC=CE延长BC至点D使CD5连接DE.求证ABC∽△CED

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ABCD,∠B=90°AB=AD,∠BAD的平分线交BCE,连接DE

1)说明点DABE的外接圆上;

2)若∠AED=CED,试判断直线CDABE外接圆的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF,∠CFE的平分线交于点G,∠BEF,∠DFE的平分线交于点H.易证∠EHF=∠EGF=∠GEH=90°,从而可知四边形EGFH是矩形.

小明继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.

由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形.要证平行四边形MNQP是菱形,只要证MN=NQ.由已知条件_____,MN∥EF,可得NG=NF,故只要证GM=FQ,即证△MGE≌△QFH.易证_____,_____,故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,_____,即可得证.

查看答案和解析>>

同步练习册答案