【题目】如图,E为菱形ABCD的边CD上任意点,将CE绕点E旋转一定角度后与AD平行.
(1)如图,若CE旋转后得到PE和NE,试判断下列结论是否成立?
①BD平分AN, ;
②BD⊥AP, (填写“成立”或“不成立”);
(2)证明(1)中你的判断.
(3)若∠ABC=60°,AB=BM=+1,请直接写出CE的长度.
【答案】(1)①成立;②成立;(2)见解析;(3) .
【解析】
(1)根据题意、结合图形进行猜测;
(2)连接AC、PC、CN,根据等腰三角形的性质、三角形内角和定理证明∠ECP=∠DCA,得到A、P、C三点共线,根据菱形的性质证明即可;
(3)根据菱形的性质和余弦的定义求出BH,得到HM,根据三角形中位线定理求出CN,根据余弦的定义求出PN,根据直角三角形的性质解答即可.
(1)①BD平分AN,成立;
②BD⊥AP,成立.
故答案为:①成立;②成立;
(2)连接AC、PC、CN.
∵EP=EC,∴∠ECP=∠EPC,∴∠ECP==90°﹣∠PEC,同理,∠DCA=90°﹣∠ADC.
∵PN∥AD,∴∠PEC=∠ADC,∴∠ECP=∠DCA,∴A、P、C三点共线.
∵四边形ABCD是菱形,∴BD⊥AC.
∵CE=PE=EN,∴∠PCN=90°,∴CN∥BD,又AH=HC,∴AM=MN,即BD平分AN;
(3)∵四边形ABCD是菱形,∴∠ABD=∠ABC=30°,∴BH=AB×cos30°=,∴HM=BM﹣BH=+1﹣=.
∵∠ABC=60°,∴∠BAD=120°.
∵∠ABH=30°,∠AHB=90°,∴∠BAH=60°,∴∠DAC=120°-60°=60°.
∵AD∥PN,∴∠NPC=∠DAC=60°.
∵AH=HC,AM=MN,∴CN=2HM=﹣1,CN∥BD,∴∠PCN=∠BHC=90°,∴∠PNC=90°-60°=30°,∴PN==,∴CE=PN=.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.
(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆客车与一辆货车分别从相距的甲、乙两地同时相向出发,匀速而行,客车到达乙地后停留,然后按原路原速返回,最终客车比货车晚到达甲地.客车与货车距各自出发地的距离与所用的时间的关系如图所示,下列说法错误的是( )
A.客车返回的速度为B.货车的速度为
C.出发时,客车与货车相距D.出发时,客车与货车距各自出发地的距离相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,点是斜边的中点.点从点出发以的速度向点运动,点同时从点出发以一定的速度沿射线方向运动,规定当点到终点时停止运动.设运动的时间为秒,连接、.
(1)填空:______;
(2)当且点运动的速度也是时,求证:;
(3)若动点以的速度沿射线方向运动,在点、点运动过程中,如果存在某个时间,使得的面积是面积的两倍,请你求出时间的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC交AC于点D,过点D作DE⊥AB交AB于点E,过C作CF∥BD交ED于F.
(1)求证:△BED≌△BCD;
(2)若∠A=36°,求∠CFD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有2个空心菱形,第②个图形中一共有5个空心菱形,第③个图形中一共有11个空心菱形,…,按此规律排列下去,第⑨个图形中空心菱形的个数为( )
A.68B.76C.86D.104
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com