【题目】如图△AOB和△ACD是等边三角形,其中AB⊥x轴于E点.
(1)如图,若OC=5,求BD的长度;
(2)设BD交x轴于点F,求证:∠OFA=∠DFA;
(3)如图,若正△AOB的边长为4,点C为x轴上一动点,以AC为边在直线AC下方作正△ACD,连接ED,求ED的最小值.
【答案】(1)5;(2)见解析;(3)1.
【解析】试题分析:(1)先由等边三角形的性质得出 进而得出 即可判断出≌即可得出结论;
(2)借助(1)得出的≌,得出 进而求出 再判断出, ≌即可求出
(3)如图3中,连接DB并延长至点N,由≌(SAS),推出,推出则D点在直线BN上运动,过E作EH⊥DN于点H,当D点运动至H时,ED最小;
试题解析:(1)∵点C(5,0).
∴OC=5,
∵△AOB和△ACD是等边三角形,
∴∠OAC=∠BAD,
在△AOC和△ABD中,
∴≌,
∴BD=OC=5;
(2)∵△AOB是等边三角形,且AB⊥x轴于E点,
∴∠AOE=∠BOE=30,
由(1)知, ≌.
在△AOF和△BOF中,
∴≌.
根据平角的定义得,
∴∠OFA=∠DFA;
(3)如图3中,连接并延长至点,
易证: ≌(SAS),
则D点在直线BN上运动
过E作于点H,当D点运动至H时,ED最小,
此时,
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.
(1)求函数y=x+3的坐标三角形的三条边长;
(2)若函数y=x+b(b为常数)的坐标三角形周长为16,求此三角形面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读资料:小明是一个爱动脑筋的好学生,他在学习了有关圆的切线性质后,意犹未尽,又查阅到了与圆的切线相关的一个问题:
如图1,已知PC是⊙O的切线,AB是⊙O的直径,延长BA交切线PC与P,连接AC、BC、OC.
因为PC是⊙O的切线,AB是⊙O的直径,所以∠OCP=∠ACB=90°,所以∠1=∠2.
又因为∠B=∠1,所以∠B=∠2.
在△PAC与△PCB中,又因为:∠P=∠P,所以△PAC∽△PCB,所以,即PC2=PAPB.
问题拓展:
(Ⅰ)如果PB不经过⊙O的圆心O(如图2)等式PC2=PAPB,还成立吗?请证明你的结论;
综合应用:
(Ⅱ)如图3,⊙O是△ABC的外接圆,PC是⊙O的切线,C是切点,BA的延长线交PC于点P;
(1)当AB=PA,且PC=12时,求PA的值;
(2)D是BC的中点,PD交AC于点E.求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:
(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为 ;
(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;
(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.
(1)若∠B=70°,则∠NMA的度数是 .
(2)连接MB,若AB=8cm,△MBC的周长是14cm.
①求BC的长;
②在直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D是△ABC的BC边上的一点,∠B =40°,∠ADC=80°.
(1)求证:AD=BD;
(2)若∠BAC=70°,判断△ABC的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com