【题目】(本小题满分9分)已知:关于的方程.
(1)若方程有两个相等的实数根,求的值,并求出这时的根.
(2)问:是否存在正数,使方程的两个实数根的平方和等于136;若存在,请求出满足条件的值;若不存在,请说明理由.
【答案】(1)=1, ;(2)不存在.
【解析】试题分析:(1)根据一元二次方程的根的判别式△=0,建立关于m的等式,由此求出m的取值.再化简方程,进而求出方程相等的两根;
(2)利用根与系数的关系,化简x12+x22=136,即(x1+x2)2﹣2x1x2=136.根据根与系数的关系即可得到关于m的方程,解得m的值,再判断m是否符合满足方程根的判别式.
试题解析:解:(1)若方程有两个相等的实数根,则有△=b2﹣4ac=(8﹣4m)2﹣16m2=64﹣64m=0,解得m=1,当m=1时,原方程为x2+4x+4=0,∴x1=x2=﹣2;
(2)不存在.
假设存在,则有x12+x22=136.
∵x1+x2=4m﹣8,x1x2=4m2,∴(x1+x2)2﹣2x1x2=136.
即(4m﹣8)2﹣2×4m2=136,∴m2﹣8m﹣9=0,(m﹣9)(m+1)=0,∴m1=9,m2=﹣1.
∵△=(8﹣4m)2﹣16m2=64﹣64m≥0,∴0<m≤1,∴m1=9,m2=﹣1都不符合题意,∴不存在正数m,使方程的两个实数根的平方和等于136.
科目:初中数学 来源: 题型:
【题目】“一个数比它的相反数大-4”,若设这数是x,则可列出关于x的方程为( ).
A.x=-x+4
B.x=-x+(-4)
C.x=-x-(-4)
D.x-(-x)=4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是( )
A. 4.5秒 B. 3秒 C. 3秒或4.8秒 D. 4.5秒或4.8秒
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小李在一次高尔夫球选拔赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA与水平方向OC的夹角为30o,O、A两点相距8米.
(1)求直线OA的解析式;
(2)求出球的飞行路线所在抛物线的解析式;
(3)判断小李这一杆能否把高尔夫球从O点直接打入球洞A点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为建设美丽家园,某企业逐年增加对环境保护的经费投入,2012年投入了400万元,预计到2014年将投入576万元.
(1)求2012年至2014年该单位环保经费投入的年平均增长率;
(2)该单位预计2015年投入环保经费不低于680万元,若继续保持前两年的年平均增长率,该目标能否实现?请通过计算说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com