精英家教网 > 初中数学 > 题目详情

【题目】已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6⊙O相交(点O为坐标原点),则m的取值范围为_____

【答案】m<

【解析】

利用待定系数法解答得出平移后得到的直线,求出A、B点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.

把点(12,﹣5)代入直线y=kx得,
﹣5=12k,
∴k=﹣
由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m(m>0),
设直线l与x轴、y轴分别交于点A、B,(如图所示)
当x=0时,y=m;当y=0时,x=m,
∴A(m,0),B(0,m),
即OA=m,OB=m,
在Rt△OAB中,AB=m
过点O作OD⊥AB于D,
∵S△ABO=ODAB=OAOB,
OD=××
∵m>0,解得OD=m,
由直线与圆的位置关系可知m<6,解得m<
故答案为:m<.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点.ABC的边BCx轴上,AC两点的坐标分别为A0m)、Cn0),B(﹣50),且,点PB出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.

1)求AC两点的坐标;

2)连接PA,用含t的代数式表示POA的面积;

3)当P在线段BO上运动时,是否存在一点P,使PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%

1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.

2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?

3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年本市蜜桔大丰收某水果商销售一种蜜桔成本价为10/千克已知销售价不低于成本价且物价部门规定这种产品的销售价不高于18/千克市场调查发现该产品每天的销售量y(千克与销售价x(元/千克之间的函数关系如图所示

1yx之间的函数关系式

2该经销商想要每天获得150元的销售利润销售价应定为多少

销售利润=销售价成本价

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请在下面括号里补充完整证明过程:

已知:如图,△ABC中,∠ACB90°AF平分∠CAB,交CD于点E,交CB于点F,且∠CEF=∠CFE.求证:CDAB.

证明:∵AF平分∠CAB (已知)

1=∠2

∵∠CEF=∠CFE , 又∠3=CEF (对顶角相等)

∴∠CFE=3(等量代换)

∵在△ACF中,∠ACF90°(已知)

∴( +CFE90°

∵∠1=∠2, CFE=3(已证) ∴( + )=90°(等量代换)

在△AED, ADE90°( 三角形内角和定理)

CDAB .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数学趣闻:上世纪九十年代,国外有人传说:从月亮上看地球,长城是肉眼唯一看得见的建筑物.设长城的厚度为,人的正常视力能看清的最小物体所形成的视角为,且已知月、地两球之间的距离为,根据学过的数学知识,你认为这个传说________.(请填可能不可能,参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如图所示的尚不完整的统计图表.

甲校成绩统计表

分数

7

8

9

10

人数

11

0

8

1)在图①中,“7所在扇形的圆心角等于______

2)请你将②的统计图补充完整;

3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;

4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).

(1)写出该函数图象的对称轴;

(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个矩形的长为a,宽为b(a0b0),则矩形的面积为ab.代数式xy(x0y0)可以看作是边长为xy的矩形的面积.我们可以由此解一元二次方程:x2+x60(x0).具体过程如下:

①方程变形为x(x+1)6.

②画四个边长为x+1x的矩形如图放置;

③由面积关系求解方程.

SABCD(x+x+1)2,又SABCD4x(x+1)+12.

(x+x+1)24x(x+1)+1,又x(x+1)6

(2x+1)225

x0

x2.

参照上述方法求关于x的二次方程x2+mxn0的解(x0m0n0).(要求:画出示意图,标注相关线段的长度,写出解题步骤)

查看答案和解析>>

同步练习册答案