【题目】在△ABC中AB=15,AC=13,高AD=12,求BC的长.
【答案】14或4
【解析】
分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC. 在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=BD-CD.
解:(1)如图,
锐角△ABC中,AC=13,AB=15,BC边上高AD=12,
∵在Rt△ACD中AC=13,AD=12,
∴CD2=AC2-AD2=132-122=25,
∴CD=5,
在Rt△ABD中AB=15,AD=12,由勾股定理得,
BD2=AB2-AD2=152-122=81,
∴BD=9,
∴BC的长为BD+DC=9+5=14,
(2)如图,
钝角△ABC中,AC=13,AB=15,BC边上高AD=12,
在Rt△ACD中AC=13,AD=12,由勾股定理得,
CD2=AC2-AD2=132-122=25,
∴CD=5,
在Rt△ABD中AB=15,AD=12,由勾股定理得,
BD2=AB2-AD2=152-122=81,
∴BD=9,
∴BC的长为DB-BC=9-5=4.
故答案为14或4.
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E.若△CDE的周长为10,则AB+AD的值是( )
A. 10
B. 15
C. 25
D. 30
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB⊥BC,DC⊥BC,垂足分别为B、C,设AB=4,DC=1,BC=4.
(1)求线段AD的长.
(2)在线段BC上是否存在点P,使△APD是等腰三角形?若存在,求出线段BP的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.
(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.
(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点E,交AB于点D.
(1)若∠A=40°,求∠CBE的度数;
(2)若△BCE的周长为8cm,AB=5cm,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察如图所示的长方体.
(1)用符号表示下列两棱的位置关系:AB___A′B′,AA′_____AB,D′A′_____D′C′,AD______BC.
(2) A′B′与BC所在的直线是两条不相交的直线,它们_____平行线.(填“是”或“不是”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=12,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论: ①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=28.8. 其中正确结论的个数是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com