【题目】定义新运算:a*b=a(b﹣1),若a、b是关于一元二次方程x2﹣x+ m=0的两实数根,则b*b﹣a*a的值为 .
【答案】0
【解析】解:∵a、b是关于一元二次方程x2﹣x+ m=0的两实数根, ∴a2﹣a=﹣ m,b2﹣b=﹣ m,
∴b*b﹣a*a=b(b﹣1)﹣a(a﹣1)=b2﹣b﹣(a2﹣a)=﹣ m﹣(﹣ m)=0.
所以答案是:0.
【考点精析】认真审题,首先需要了解根与系数的关系(一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商),还要掌握实数的运算(先算乘方、开方,再算乘除,最后算加减,如果有括号,先算括号里面的,若没有括号,在同一级运算中,要从左到右进行运算)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】定义:对于一个有理数x,我们把[x]称作x的对称数.
若,则[x]=x-2:若x<0,则[x]=x+2.例:[1]=1-2=-1,[-2]=-2+2=0
(1)求[][-1]的值;
(2)已知有理数a>0.b<0,且满足[a]=[b],试求代数式的值:
(3)解方程:[2x]+[x+1]=1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若关于y的一元二次方程ky2﹣4y﹣3=3y+4有实根,则k的取值范围是( )
A.k>﹣
B.k≥﹣ 且k≠0
C.k≥﹣
D.k> 且k≠0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰三角形ABC中,AB=AC,AD是BC边上的高,点E,F分别是边AB,AC的中点,且EF∥BC.
(1)试说明△AEF是等腰三角形;
(2)试比较DE与DF的大小关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,沿图示的中位线DE剪一刀,拼成如图1所示的平行四边形BCFD.请仿上述方法,按要求完成下列操作设计,并在规定位置画出图示:
(1)在△ABC中,若∠C=90°,沿着中位线剪一刀,可拼成矩形或等腰梯形,请将拼成的图形画在图2位置(只需画一个);
(2)在△ABC中,若AB=2BC,沿着中位线剪一刀,可拼成菱形,并将拼成的图形画在图3位置;
(3)在△ABC中,需增加什么条件,沿着中位线剪一刀,拼成正方形,并将拼成的图形和符合条件的三角形一同画在图4位置;
(4)在△ABC中,若沿着某条线剪一刀,能拼成等腰梯形,请将拼成的图形画在图5位置(保留寻求剪裁线的痕迹).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com