【题目】已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.
【答案】4.
【解析】
试题过A、B分别作y轴,x轴的垂线,根据“△ABO的面积=矩形OCDE的面积—△ACO的面积—△BEO的面积—△ABD的面积”计算出即可.
试题解析: 解:如图所示,过A,B分别作y轴,x轴的垂线,垂足为C,E,两线交于点D,
则C(0,3),D(3,3),E(3,0).
又因为O(0,0),A(1,3),B(3,1),
所以OC=3,AC=1,OE=3,BE=1,
AD=DC﹣AC=3﹣1=2,
BD=DE﹣BE=3﹣1=2,
则四边形OCDE的面积为3×3=9,
△ACO和△BEO的面积都为×3×1=,
△ABD的面积为×2×2=2,
所以△ABO的面积为9﹣2×﹣2=4.
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象过M(1,3),N(-2,12)两点.
(1)求函数的解析式;
(2)试判断点P(2a,-6a+8)是否在函数的图象上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图(1))和条形图(如图(2)),经确认扇形图是正确的,而条形图尚有一处错误. 回答下列问题:
(1)写出条形图中存在的错误,并说明理由;
(2)写出这20名学生每人植树量的众数、中位数;
(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的: 第一步:求平均数的公式是 = ;
第二步:在该问题中,n=4,x1=4,x2=5,x3=6,x4=7;
第三步: = =5.5(份)
①小宇的分析是从哪一步开始出现错误的?
②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.
我们有多少种剪法,图1是其中的一种方法:
定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.
(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)
(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标中表示下面各点:A(0,3),B(1,﹣3),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(5,7).
①A点到原点O的距离是________ .
②将点C向x轴的负方向平移6个单位它与点________重合.
③连接CE,则直线CE与y轴位置关系是________ .
④点F分别到x、y轴的距离分别是________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题8分)如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交AB于点F,∠ADC的平分线DG交边AB于点G.
(1)试说明AF=GB;
(2)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】万美服装店准备购进一批两种不同型号的衣服,已知若购进A型号的衣服9件,B型号的衣服10件共需1 810元;若购进A型号的衣服12件,B型号的衣服8件共需1 880元.已知销售一件A型号的衣服可获利18元,销售一件B型号的衣服可获利30元.
(1)求A、B型号衣服的进价各是多少元?
(2)若已知购进的A型号的衣服比B型号衣服的2倍还多4件,且购进的A型号的衣服不多于28件,则该服装店要想获得的利润不少于699元,在这次进货时可有几种进货方案?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com