精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD的对角线ACBD于点EABBCF为四边形ABCD外一点,且∠FCA90°,∠CBF=∠DCB

1)求证:四边形DBFC是平行四边形;

2)如果BC平分∠DBF,∠F45°,BD2,求AC的长.

【答案】1)见解析 22

【解析】

1)证BDCFCDBF,即可得出四边形DBFC是平行四边形;
2)由平行四边形的性质得出CF=BD=2,由等腰三角形的性质得出AE=CE,作CMBFF,则CE=CM,证出△CFM是等腰直角三角形,由勾股定理得出CM=,得出AE=CE=,即可得出AC的长.

1)∵ACBD,∠FCA=90°,∠CBF=DCB
BDCFCDBF
∴四边形DBFC是平行四边形;
2)∵四边形DBFC是平行四边形,

CF=BD=2
AB=BCACBD
AE=CE
CMBFF
BC平分∠DBF
CE=CM
∵∠F=45°
∴△CFM是等腰直角三角形,

CF=CM
CM=
AE=CE=CM=
AC=2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线x轴交于点y轴交于点C,抛物线经过点BC,与x轴的另一个交点为A

1)求抛物线的解析式;

2)点P是直线下方抛物线上一动点,求四边形面积最大时点P的坐标;

3)若M是抛物线上一点,且,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,设抛物线yax2+bx+cx轴交于两个不同的点A(﹣10),Bm0),与y轴交于点C0,﹣2),且∠ACB90度.

1)求m的值和抛物线的解析式;

2)已知点D1n)在抛物线上,过点A的直线yx+1交抛物线于另一点E,求点D和点E的坐标;

3)在x轴上是否存在点P,使以点PBD为顶点的三角形与三角形AEB相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y()与时间t(分钟)之间的函数关系如图所示.乙回到学校用了______分钟.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数yx2mxn的图像与坐标轴交于ABC三点,其中A点的坐标为、点B的坐标是

(1)求该二次函数的表达式及点C的坐标;

(2)若点D的坐标是,点F为该二次函数在第四象限内图像上的动点,连接CDCF,以CDCF为邻边作平行四边形CDEF.设平行四边形CDEF的面积为S

①求S的最大值;

②在点F的运动过程中,当点E落在该二次函数图像上时,请求出点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是正△ABC内一点,OA=3OB=4OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;OO′的距离为4③∠AOB=150°④S四边形AOBO⑤SAOC+SAOB=.其中正确的结论是(  )

A.①②③⑤B.①②③④C.①②③④⑤D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某路灯在铅垂面内的示意图,灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从DE两处测得路灯A的仰角分别为α45°,且tanα6.求灯杆AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与轴交于点,与x轴负半轴交于B,与正半轴交于点,且

1)求该二次函数解析式;

2)若是线段上一动点,作,交于点,连结面积最大时,求点的坐标;

3)若点轴上方的抛物线上的一个动点,连接,设所得的面积为.问:是否存在一个的值,使得相应的点有且只有个,若有,求出这个的值,并求此时点的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CDAB=CD,点EFBC上,且BE=CF

1)求证:△ABE≌△DCF

2)试证明:以AFDE为顶点的四边形是平行四边形.

查看答案和解析>>

同步练习册答案