精英家教网 > 初中数学 > 题目详情

【题目】如图,在数轴上,点A、B分别表示点﹣5、3,M、N两点分别从A、B同时出发以3cm/s、1cm/s的速度沿数轴向右运动.

(1)求线段AB的长;

(2)求当点M、N重合时,它们运动的时间;

(3)M、N在运动的过程中是否存在某一时刻,使BM=2BN.若存在请求出它们运动的时间,若不存在请说明理由.

【答案】(1)8;(2)4s;(3)存在,理由见解析.

【解析】

(1) 根据两点间距离公式计算即可;

(2) 它们运动的时间为t, 当点MN重合时,列方程求解即可;

(3)设存在,设它们运动的时间是x,根据BM=2BN列方程求解.

解:(1)AB=|3﹣(﹣5)|=8;

(2)设它们运动的时间为t,

根据题意得,3t﹣t=8,

解得:t=4,

当点M、N重合时,它们运动的时间是4s;

(3)存在,

设它们运动的时间是x,

根据题意得,8﹣3x=x﹣3或3x﹣8=x﹣3,

解得:x=或x=

∴它们运动的时间为: s或s.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(本题8分)ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.

(1)按要求作图:

①画出ABC关于原点O的中心对称图形A1B1C1

②画出将ABC绕点A逆时针旋转90°得到AB2C2

(2)回答下列问题:

①△A1B1C1中顶点A1坐标为 ②若P(a,b)为ABC边上一点,则按照(1)中①作图,点P对应的点P1的坐标为

【答案】(1)作图见解析;(2)(1,-2)(-a,-b)

【解析】试题分析:(1)首先找出对应点的位置,再顺次连接即可;

2根据图形可直接写出坐标;根据关于原点对称点的坐标特点可得答案.

试题解析:(1)如图所示:

2根据图形可得A1坐标为(2﹣4);

P1的坐标为(﹣a﹣b).

故答案为:(﹣2﹣4);(﹣a﹣b).

考点:作图-旋转变换.

型】填空
束】
23

【题目】在学习了普查与抽样调查之后,某校八(1)班数学兴趣小组对该校学生的视力情况进行了抽样调查,并画出了如图所示的条形统计图.请根据图中信息解决下列问题:

(1)本次抽查活动中共抽查了  名学生;

(2)已知该校七年级、八年级、九年级学生数分别为360人、400人、540人.

①试估算:该校九年级视力不低于4.8的学生约有  名;

②请你帮忙估算出该校视力低于4.8的学生数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD中,点EFBD上,且ABBEDF

(1)求证:四边形AECF是菱形;

(2)若正方形的边长为2,求四边形AECF的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是
(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在数轴l上,一动点Q从原点O出发,沿直线l以每秒钟2个单位长度的速度来回移动,其移动方式是先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…

(1)求出5秒钟后动点Q所处的位置;

(2)如果在数轴l上还有一个定点A,且A与原点O相距20个单位长度,问:动点Q从原点出发,可能与点A重合吗?若能,则第一次与点A重合需多长时间?若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:已知Q、K、R为数轴上三点,若点K到点Q的距离是点K到点R的距离的2倍,我们就称点K是有序点对[Q,R]的好点

根据下列题意解答问题:

(1)如图1,数轴上点Q表示的数为1,点P表示的数为0,K表示的数为1,点R

表示的数为2.因为点K到点Q的距离是2,点K到点R的距离是1,所以点K

有序点对的好点但点K不是有序点对的好点.同理可以判断:

P__________有序点对的好点,点R______________有序点对的好点(填不是”);

(2)如图2,数轴上点M表示的数为-1,点N表示的数为5,若点X是有序点对的好点,求点X所表示的数,并说明理由?

(3)如图3,数轴上点A表示的数为20,点B表示的数为10.现有一只电子蚂蚁C

B出发,以每秒2个单位的速度向左运动t当点A、B、C中恰有一个点为其余两有序点对的好点,求t的所有可能的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD相交于O点,AB=5,AC=6,过D点作DE//ACBC的延长线于E

(1)求BDE的周长

(2)点P为线段BC上的点,连接PO并延长交AD于点Q,求证:BP=DQ

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先让我们一起来学习方程m2+1= 的解法:
解:令m2=a,则a+1= ,方程两边平方可得,(a+1)2=a+3
解得a1=1,a2=﹣2,∵m2≥0∴m2=1∴m=±1
点评:类似的方程可以用“整体换元”的思想解决.
不妨一试:
如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.

(1)求抛物线的解析式;
(2)①当P点运动到A点处时,通过计算发现:POPH(填“>”、“<”或“=”);
(3)当△PHO为等边三角形时,求点P坐标;
(4)如图2,设点C(1,﹣2),问是否存在点P,使得以P、O、H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图正方形ABCD的边长为2,点E、F、G、H分别在AD、AB、BC、CD上的点,且AE=BF=CG=DH,分别将△AEF、△BFG、△CGH、△DHE沿EF、FG、GH、HE翻折,得四边形MNKP,设AE=x,S四边形MNKP=y,则y关于x的函数图象大致为( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案