精英家教网 > 初中数学 > 题目详情

【题目】已知在数轴l上,一动点Q从原点O出发,沿直线l以每秒钟2个单位长度的速度来回移动,其移动方式是先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…

(1)求出5秒钟后动点Q所处的位置;

(2)如果在数轴l上还有一个定点A,且A与原点O相距20个单位长度,问:动点Q从原点出发,可能与点A重合吗?若能,则第一次与点A重合需多长时间?若不能,请说明理由.

【答案】见解析

【解析】解:(1)2×5=10,

点Q走过的路程是1+2+3+4=10,

Q处于:1﹣2+3﹣4=4﹣6=﹣2;

(2)①当点A在原点左边时,设需要第n次到达点A,则

=20,

解得n=39,

动点Q走过的路程是

1+|﹣2|+3+|﹣4|+5++|﹣38|+39,

=1+2+3++39,

==780,

时间=780÷2=390秒(6.5分钟);

②当点A原点左边时,设需要第n次到达点A,则=20,

解得n=40,

动点Q走过的路程是

1+|﹣2|+3+|﹣4|+5++39+|﹣40|

=1+2+3++40,

==820,

时间=820÷2=410秒 (6分钟).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知直线AB经过点O,∠COD=90°,OE∠BOC的平分线.

(1)如图1,若∠AOC=50°,求∠DOE;

(2)如图1,若∠AOC=α,∠DOE;(用含α的式子表示)

(3)将图1中的∠COD绕顶点O顺时针旋转到图2的位置,其它条件不变,(2)中的结论是否还成立?试说明理由;

(4)将图1中的∠COD绕顶点O逆时针旋转到图3的位置,其它条件不变,求∠DOE.(用含α的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市电力部门对一般照明用电实行“阶梯电价”收费,具体收费标准如下:

第一档:月用电量不超过240度的部分的电价为每度0.6元;

第二档:月用电量超过240度但不超过400度部分的电价为每度0.65元;

第三档:月用电量超过400度的部分的电价为每度0.9元.

(1)已知老王家去年5月份的用电量为380度,则老王家5月份应交电费  元;

(2)若去年6月份老王家用电的平均电价为0.70元,求老王家去年6月份的用电量;

(3)已知老王家去年7、8月份的用电量共500度(7月份的用电量少于8月份的用电量),两个月的总电价是303元,求老王家7、8月的用电量分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,在数轴上有AB两点,所表示的数分别为,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:

运动前线段AB的长为______;运动1秒后线段AB的长为______

运动t秒后,点A,点B运动的距离分别为____________

t为何值时,点A与点B恰好重合;

在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上,点A、B分别表示点﹣5、3,M、N两点分别从A、B同时出发以3cm/s、1cm/s的速度沿数轴向右运动.

(1)求线段AB的长;

(2)求当点M、N重合时,它们运动的时间;

(3)M、N在运动的过程中是否存在某一时刻,使BM=2BN.若存在请求出它们运动的时间,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y= x2 (b+1)x+ (b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.

(1)点B的坐标为 , 点C的坐标为(用含b的代数式表示);
(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两个公司为某敬老院各捐款300000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐款20元.则甲、乙两公司各有多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知关于x的二次函数y=x2+mx的图象经过原点O,并且与x轴交于点A,对称轴为直线x=1.
(1)常数m= , 点A的坐标为
(2)若关于x的一元二次方程x2+mx=n(n为常数)有两个不相等的实数根,求n的取值范围;
(3)若关于x的一元二次方程x2+mx﹣k=0(k为常数)在﹣2<x<3的范围内有解,求k的取值范围.

查看答案和解析>>

同步练习册答案