精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.ABC的三个顶点A,B,C都在格点上,将△ABC绕点A逆时针方向旋转90°得到△AB′C′

(1)在正方形网格中,画出△AB′C′

(2)分别画出旋转过程中,点BC经过的路径;

(3)计算线段BC在变换到B′C′的过程中扫过区域的面积.

【答案】1)见详解;(2)B点经过的路径长;C点经过的路径长3

【解析】

1)利用网格特点和旋转的性质画出BC的对应点B′C′,从而得到AB′C′

2)先利用勾股定理计算出AB,然后利用弧长公式计算点B点和C经过的路径;

3)根据扇形面积公式,利用线段BC在变换到B′C′的过程中扫过区域的面积=S扇形BAB′-S扇形CAC′进行计算.

(1)如图,AB′C′为所作;

(2)AC=3,

所以点C经过的路径长

B经过的路径长

(3)线段BC在变换到B′C′的过程中扫过区域的面积==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+mx+m﹣3=0.

(1)若该方程的一个根为2,求m的值及方程的另一个根;

(2)求证:不论m取何实数,该方程都有两个不相等的实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知的直径,的弦,于点,过点的切线交的延长线于点,连接并延长交的延长线于点.

1)求证:的切线;

2)若,求线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中对角线ACBD相交于点OCEBD,垂足为点ECE=5,且EO=2DE,则ED的长为( )

A.B.2C.1D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,画一条平行于BC的直线,使其将△ABC分成两部分,且所分三角形与梯形面积比为1:3;

(2)如图②,△ABCAB=4AC=3BC=6D是△ABCAC边上的点,AD=2,过点D画一条直线l将△ABC分成两部分,l与△ABC另一边的交点为点P,使其所分的一个三角形与△ABC相似,并求出DP的长;

(3)如图③所示,在等腰△ABC中,CA=CB=10AB=12.在△ABC中放入正方形DEMN和正方形EFPH,使得DE.EF在边AB上,点P.N分别在边CB.CA上,若较大正方形的边长为a,请用含a的代数式表示较小正方形的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过两点A(﹣30),B03),且其对称轴为直线x=﹣1

1)求此抛物线的解析式.

2)若点Q是对称轴上一动点,当OQ+BQ最小时,求点Q的坐标.

3)若点P是抛物线上点A与点B之间的动点(不包括点A,点B),求PAB面积的最大值,并求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知线段AB和直线l,用直尺和圆规在l上作出所有的点P,使得∠APB=30°,如图②,小明的作图方法如下:

第一步:分别以点AB为圆心,AB长为半径作弧,两弧在AB上方交于点O

第二步:连接OAOB

第三步:以O为圆心,OA长为半径作⊙O,交lP1P2

所以图中P1P2即为所求的点.

1)在图②中,连接P1AP1B,证明∠AP1B=30°

2)如图③,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°,(不写做法,保留作图痕迹).

3)已知矩形ABCD,若BC=2AB=mPAD边上的点,若满足∠BPC=45°的点P恰有两个,则m的取值范围为______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:

尺规作图:如图,过圆外一点作圆的切线.

已知:P为⊙O外一点.

求作:经过点P的⊙O的切线.

小敏的作法如下:如图,

(1)连接OP,作线段OP的垂直平分线MNOP于点C.

(2)以点C为圆心,CO的长为半径作圆,交⊙OAB两点.

(3)作直线PAPB.

所以直线PAPB就是所求作的切线.

老师认为小敏的作法正确.

请回答:

(1)连接OAOB后,可证∠OAP=∠OBP90°,其依据是_________.

(2)如果⊙O的半径等于3,点P到切点的距离为4,求点A与点B之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____

查看答案和解析>>

同步练习册答案