【题目】(1)如图①,画一条平行于BC的直线,使其将△ABC分成两部分,且所分三角形与梯形面积比为1:3;
(2)如图②,△ABC中AB=4,AC=3,BC=6,D是△ABC中AC边上的点,AD=2,过点D画一条直线l将△ABC分成两部分,l与△ABC另一边的交点为点P,使其所分的一个三角形与△ABC相似,并求出DP的长;
(3)如图③所示,在等腰△ABC中,CA=CB=10,AB=12.在△ABC中放入正方形DEMN和正方形EFPH,使得DE.EF在边AB上,点P.N分别在边CB.CA上,若较大正方形的边长为a,请用含a的代数式表示较小正方形的边长.
【答案】(1)见解析;(2)见解析,PD=4;(3)小正方形边长为.
【解析】
(1)直线MN将三角形与梯形面积比为1:3,则△AMN与△ABC的面积比是1:4,则相似比是1:2,所以过AB,AC的中点M,N作BC的平行线即可;
(2)先求到CD=1,再分DP// BC,DP//AB,∠CDP=∠B, ∠ADP=∠B四种情况讨论,可得到DP的长;
(3)设正方形EFPH的边长为b,过点C作CG⊥AB于点G,证得△ADN∽△AGC,△BFP∽△BGC,得到,,再根据AD+DE +EF +FB=AB=12,所以,从而得到小正方形边长为.
解: (1)如图所示:直线MN即为所求,M.N分别为AB.AC中点
(2)∵AC=3, AD=2,
∴ CD=1
①当DP// BC时,△APD∽△ABC
,即
∴ PD=4
②当DP//AB时,△CDP∽△CAB
,即
③当∠CDP=∠B时,△CDP∽△CBA
,即
∴
④当∠ADP=∠B时,,则△ADP∽△ABC,
,即
∴
(3)设正方形EFPH的边长为b,过点C作CG⊥AB于点G,
∵CA=CB=10, AB=12
∴ AG=BG=6
在Rt△AGC中,由勾股定理,得:
由题意得: △ADN∽△AGC,△BFP∽△BGC
,
即,
∴ ,
∵AD+DE +EF +FB=12
∴,即a+b=
∴
综上所述,小正方形边长为
科目:初中数学 来源: 题型:
【题目】如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.
(1)求证:DF垂直平分AC;
(2)求证:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平面直角坐标系中,A(0,8)、B(6,0) .动点P从A点出发,沿y轴负半轴方向运动,速度每秒2个单位长度,动点Q从B点出发,沿BA方向向A点运动,速度每秒1个单位长度.两点同时出发,Q点到达A点时,两点同时停止运动,运动时间为t秒.
(1)当△APQ面积为12,求t的值.
(2)当△APQ的外心(三角形的外心是三角形三边垂直平分线的交点)在△APQ的边上时,求t值.
(3)若Q点在直线AB上运动,过Q点作QH⊥x轴,垂足为H,当△QBH与△ABO的相似比为1:2时,直接写出Q点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个四位数,记千位上和百位上的数字之和为,十位上和个位上的数字之和为,如果,那么称这个四位数为“和平数”.例如:1423,,,因为,所以1423是“和平数”.
(1)直接写出:最小的“和平数”是_________________,最大的“和平数”是_______________;
(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A逆时针方向旋转90°得到△AB′C′
(1)在正方形网格中,画出△AB′C′;
(2)分别画出旋转过程中,点B点C经过的路径;
(3)计算线段BC在变换到B′C′的过程中扫过区域的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线上部分点的横坐标x纵坐标y的对应值如下表
x | 0 | 1 | 2 | ||||
y | 0 | 0 | 8 |
写出该抛物线的对称轴及当时对应的函数值;
求出抛物线的解析式,并在平面直角坐标系中画出该抛物线的图象;
(3)结合图象回答:
①不等式的解集是___________________;
②当时,y的取值范围是__________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】奇思参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题奇思都不会,不过奇思还有两个“求助”可以使用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).
(1)如果奇思两次“求助”都在第一道单选题中使用,求他通关的概率;
(2)如果奇思每道单选题各使用一次“求助",请用列表法或画树状图的方法求他顺利通关的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016·宁夏中考)如图,已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.
(1)求证:AB=AC;
(2)若AB=4,BC=2 ,求CD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com