【题目】如图,已知抛物线与轴交于点,,与轴交于点,对称轴为直线,对称轴交轴于点.
(1)求抛物线的函数解析式;
(2)设为对称轴上一动点,求周长的最小值;
(3)设为抛物线上一点,为对称轴上一点,若以点为顶点的四边形是菱形,则点的坐标为 .
【答案】(1);(2);(3).
【解析】
(1)根据抛物线上关于对称轴对称的点距离为2,可以直接写出点点的坐标,再根据点的坐标代入抛物线解析式即可求出b、c的值;
(2)因为AC为定值,根据“两点之间,线段最短”可确定P点的位置,然后用勾股定理即可求得周长的最小值;
(3)根据“菱形对角线互相垂直平分以及抛物线的对称性”可得到点D的坐标.
(1)抛物线与轴交于点、,且,
根据对称性,得,
∵对称轴为直线,
∴,,
∴点、的坐标分别为、,
把、两点坐标代入,
得到,
解得,
∴抛物线的解析式为:.
(2)如图中,连结,与对称轴交点则为点,连接、.
由线段垂直平分线性质,得,
∴,
∴,
根据“两点之间,线段最短”,得周长的最小,
∵为
∴,
在中,有,
在中,有,
∴的周长的最小值为:.
(3)如图中,当点为抛物线的顶点时,时,以点、、、为顶点的四边形是菱形,此时点
故答案为:.
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D为直线BC上一动点(点D不与B、C重合)以AD为边作正方形ADEF,使∠DAF=∠BAC,连接CF.
(1)如图1,当点D在线段BC上时,求证:BD=CF;
(2)如图2,当点D在线段BC的延长线上,且∠BAC=90°时.
①问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
②延长BA交CF于点G,连接GE,若AB=2,CD=BC,请求出GE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200-2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y= 与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).
(1)试确定这两函数的表达式;
(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;
(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为反比例函数(其中)图象上的一点,在轴正半轴上有一点,.连接,,且.
(1)求的值;
(2)过点作,交反比例函数(其中)的图象于点,连接交于点,
①求线段的长;
②求线段、的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:在1~n(n ≥2)这n个自然数中,每次取两个数(不分顺序),使得所取两数之和大于n,共有多少种取法?
探究:不妨设有m种取法,为了探究m与n的关系,我们先从简单情形入手,再逐次递进,最后猜想得出结论.
探究一:在1~2这2个自然数中,每次取两个不同的数(不分顺序),使得所取的两个数之和大于2,有多少种取法?
根据题意,有下列取法:1+2,共1种取法.
所以,当n=2时,m=1.
探究二:在1~3这3个自然数中,每次取两个不同的数(不分顺序),使得所取的两个数之和大于3,有多少种取法?
根据题意,有下列取法:1+3,2+3,共2种取法.
所以,当n=3时,m=2.
探究三:在1~4这4个自然数中,每次取两个不同的数(不分顺序),使得所取的两个数之和大于4,有多少种取法?
根据题意,有下列取法:1+4,2+4,3+4,2+3,共有3+1=4种取法.
所以,当n=4时,m=3+1=4.
探究四:在1~5这5个自然数中,每次取两个不同的数(不分顺序),使得所取的两个数之和大于5,有多少种取法?
根据题意,有下列取法:1+5, 2+5, 3+5, 4+5,2+4,3+4,共有4+2=6种不同的取法.
所以,当n=5时,m=4+2=6.
探究五:在1~6这6个自然数中,每次取两个不同的数(不分顺序),使得所取的两个数之和大于6,有多少种不同的取法?(仿照上述探究方法,写出解答过程)
探究六:在1~7这7个自然数中,每次取两个不同的数,使得所取的两个数之和大于7,共有 种取法?(直接写出结果)
不妨继续探究n=8,9,···时,m与n的关系.
结论:在1~n这n个自然数中,每次取两个数,使得所取的两个数字之和大于n,当n为偶数时,共有___种取法;当n为奇数时,共有___种取法;(只填最简算式)
应用:(1)各边长都是自然数,最大边长为11的不等边三角形共有 个
(2)各边长都是自然数,最大边长为12的三角形共有 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数(,为常数)的图象经过点.
(1)求,满足的关系式;
(2)设该函数图象的顶点坐标是,当的值变化时,求关于的函数解析式;
(3)若该函数的图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为 2000 元,1700 元的A,B两种型号的净水器,下表是近两周的销售情况:
(1)求A,B两种型号的净水器的销售单价;
(2)若电器公司准备用不多于 54000 元的金额采购这两种型号的净水器共 30 台,求 A种型号的净水器最多能采购多少台?
(3)在(2)的条件下,公司销售完这 30 台净水器能否实现利润超过12800 元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com