【题目】如图,为反比例函数(其中)图象上的一点,在轴正半轴上有一点,.连接,,且.
(1)求的值;
(2)过点作,交反比例函数(其中)的图象于点,连接交于点,
①求线段的长;
②求线段、的长.
【答案】(1)12;(2)①5;②,.
【解析】
(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,利用等腰三角形的性质可得出OH的长,利用勾股定理可得出AH的长,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)①由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用勾股定理求OC的长;②由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AM∥BC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值,从而使问题得解.
解:(1)过点作轴,垂足为点,交于点,如图所示,
∵,,
∴,
∴,
∴点的坐标为.
∵为反比例函数图象上的一点,
∴.
(2)①∵轴,,点在反比例函数上,
∴,则.
②∵,,
∴,
∴,
∵,
∴,
∴.
∴,.
科目:初中数学 来源: 题型:
【题目】对于反比例函数y=﹣,下列说法错误的是( )
A.图象分布在第二、四象限
B.若点A(,),B(,)都在图象上,且<,则<
C.图象经过点(1,﹣2)
D.当x>0时,y随x的增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).
⑴分别求该化工厂治污期间及治污改造工程完工后y与x之间对应的函数关系式.
⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?
⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.
(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;
(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与轴交于点,,与轴交于点,对称轴为直线,对称轴交轴于点.
(1)求抛物线的函数解析式;
(2)设为对称轴上一动点,求周长的最小值;
(3)设为抛物线上一点,为对称轴上一点,若以点为顶点的四边形是菱形,则点的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C,D分别作BD,AC的平行线,两线相交于点P.
(1)求证:四边形CODP是菱形;
(2)当矩形ABCD的边AD,DC满足什么关系时,菱形CODP是正方形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:正方形ABCD中,,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点.
(1)当绕点旋转到时(如图1),求证:;
(2)当绕点旋转到时(如图2),则线段和之间数量关系是 ;
(3)当绕点旋转到如图3的位置时,猜想线段和之间又有怎样的的数量关系呢?并对你的猜想加以说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在△ABC 中,AB=AC.
(1)求作△ABC 外接圆(尺规作图)
(2)若△ABC 的外接圆的圆心O到 BC 边的距离为 4,BC=6,求外接圆的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】材料一:一个正整数x能写成x=a2﹣b2(a,b均为正整数,且a≠b),则称x为“雪松数”,a,b为x的一个平方差分解,在x的所有平方差分解中,若a2+b2最大,则称a,b为x的最佳平方差分解,此时F(x)=a2+b2.
例如:24=72﹣52,24为雪松数,7和5为24的一个平方差分解,32=92﹣72,32=62﹣22,因为92+72>62+22,所以9和7为32的最佳平方差分解,F(32)=92+72
材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”.例如4334,5665均为“南麓数”.
根据材料回答:
(1)请直接写出两个雪松数,并分别写出它们的一对平方差分解;
(2)试证明10不是雪松数;
(3)若一个数t既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t的一个平方差分解,请求出所有满足条件的数t中F(t)的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com