精英家教网 > 初中数学 > 题目详情
16.在?ABCD中,BD是对角线,AE⊥BD,CF⊥BD,E、F为垂足,求证:四边形AECF是平行四边形.

分析 由平行四边形的性质可得出AD=CB,AD∥CB,再由平行线的性质得出∠ADE=∠CBF;由AE⊥BD,CF⊥BD可得出∠AED=∠CFB和AE∥CF,此时已找齐满足全等三角形的判定定理AAS的条件,从而证得△AED≌△CFB,即得出AE=CF,结合平行四边形的判定定理即可得出四边形AECF是平行四边形.

解答 证明:∵四边形ABCD为平行四边形,
∴AD=CB,AD∥CB,
∴∠ADE=∠CBF.
∵AE⊥BD,CF⊥BD,
∴∠AED=∠CFB=90°,AE∥CF.
在△AED和△CFB中,
$\left\{\begin{array}{l}{∠AED=∠CFB}\\{∠ADE=∠CBF}\\{AD=CB}\end{array}\right.$,
∴△AED≌△CFB(AAS),
∴AE=CF,
∵AE∥CF,
∴四边形AECF是平行四边形.

点评 本题考查了平行四边形的判定及性质、平行线的判定及性质和全等三角形的判定及性质,解题的关键是找出AE=CF且AE∥CF.本题属于基础题,难度不大,解决该题型题目时,通过全等三角形的性质找出相等的角(或边)是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图①,等边△ABC的两边上的点M,N满足BM=AN,BN交CM于点E
(1)求证:BM2=ME•MC;
(2)如图②,把△BCE沿着BC向下翻折到△BCF,延长CF和BF交A于P,交AC于K,若等边△ABC的边长是10,求BP•CK的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图所示,公园里有一块边长为10米的正方形绿化地,现要在这块地上划出一个扇形区域举办花展,这个区域的面积是绿化地面积的一半,如图所示,正方形ABCD为绿化地,扇形EAF是所划区域,求AF的长(精确到0.1米).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知AB∥EF,∠ABC=∠DEF,试判断BC和DE的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知A(-2,3),B(2,1),P点在x轴上,若PA+PB长度最小,则点P坐标为(1,0);若PA-PB长度最大,则点P坐标为(4,0).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图1,在⊙O中,弦AB与CD交于点P,若AB=CD,则$\widehat{AC}$与$\widehat{BD}$的大小关系是(  )
A.$\widehat{AC}$=$\widehat{BD}$B.$\widehat{AC}$$>\widehat{BD}$C.$\widehat{AC}$$<\widehat{BD}$D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.(1)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为9m.
(2)题中tanAOB=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.$\sqrt{16}$的算术平方根是2,平方根是±2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知AB∥CD.

(1)如图(1),试问:∠B、∠D与∠E之间存在怎样的数量关系?
(2)如图(2),试问:∠B、∠D与∠E之间存在怎样的数量关系?
(3)如图(3),试问:∠B、∠D与∠E之间存在怎样的数量关系?
(4)如图(4),试问:∠B、∠D与∠E之间存在怎样的数量关系?
请写出你的结论,并从四个结论中选取一个进行证明.

查看答案和解析>>

同步练习册答案