【题目】如图4,已知抛物线y=ax2+bx+c(a>0)经过点A(2,0),B(6,0),交y轴于点C,且S△ABC=16.
(1)求点C的坐标;
(2)求抛物线的解析式及其对称轴;
(3)若正方形DEFG内接于抛物线和x轴(边FG在x轴上,点D,E分别在抛物线上),求S正方形DEFG.
【答案】(1)(0,8);(2)y=x2﹣x+8,其对称轴为直线x=4;(3)4
【解析】
(1)由S△ABC=×AB×OC求出OC的长度,进而确定C点坐标;(2)因为抛物线经过点A(2,0),B(6,0),故可以设二次函数的交点式,即y=a(x﹣2)(x﹣6),再将C点坐标代入即可求得解析式,进一步得到对称轴;(3)设正方形DEFG的边长为m,再根据题中的条件列出正确的D、E坐标,再将E点坐标代入二次函数求出边长m,进一步求得正方形DEFG的面积.
(1)∵A(2,0),B(6,0),
∴AB=6﹣2=4.
∵S△ABC=16,
∴×4OC=16,
∴OC=8,
∴点C的坐标为(0,8);
(2)∵抛物线y=ax2+bx+c(a>0)经过点A(2,0),B(6,0),
∴可设抛物线的解析式为y=a(x﹣2)(x﹣6),
将C(0,8)代入,得8=12a,
解得a=,
∴y=(x﹣2)(x﹣6)=x2﹣x+8,
故抛物线的解析式为y=x2﹣x+8,其对称轴为直线x=4;
(3)设正方形DEFG的边长为m,则m>0,
∵正方形DEFG内接于抛物线和x轴(边FG在x轴上,点D,E分别在抛物线上),
∴D(4﹣m,﹣m),E(4+m,﹣m).
将E(4+m,﹣m)代入y=x2﹣x+8,
得﹣m=×(4+m)2﹣×(4+m)+8,
整理得,m2+6m﹣16=0,
解得m1=2,m2=﹣8(不合题意舍去),
∴正方形DEFG的边长为2,
∴S正方形DEFG=22=4.
科目:初中数学 来源: 题型:
【题目】以下说法合理的是( )
A. 某彩票中奖的机会是,那么某人买了张彩票,肯定有一张中奖
B. 小美在次抛图钉的试验中发现了次钉尖朝上,据此他认为钉尖朝上的概率为
C. 抛掷一枚质地均匀的硬币,出现“正面”和“反面”的概率相等,因此抛次的话,一定有次“正面”,次“反面”
D. 在一次课堂上进行的试验中,甲、乙两组同学估计一枚硬币落地后正面朝上的概率为和
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中有一个3×3的正方形网格,其右下角格点(小正方形的顶点)A的坐标为(﹣1,1),左上角格点B的坐标为(﹣4,4),若分布在过定点(﹣1,0)的直线y=﹣k(x+1)两侧的格点数相同,则k的取值可以是( )
A.B.C.2D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线y=x上,OA1=1,且△B1AA2,△B2A2A3,△B3A3A4,…△Bnanan+1…分别是以A1,A2,A3,…An…为直角顶点的等腰直角三角形,则△B10A10A11的面积是( )
A. 216 B. 217 C. 218 D. 219
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.
(1)求证:AB=BE;
(2)若PA=2,cosB=,求⊙O半径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知线段AB=12厘米,动点P以2厘米/秒的速度从点A出发向点B运动,动点Q以4厘米/秒的速度从点B出发向点A运动.两点同时出发,到达各自的终点后停止运动.设两点之间的距离为s(厘米),动点P的运动时间为t秒,则下图中能正确反映s与t之间的函数关系的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据.
薄板的边长(cm) | 20 | 30 |
出厂价(元/张) | 50 | 70 |
(1)求一张薄板的出厂价与边长之间满足的函数关系式;
(2)40cm的薄板,获得的利润是26元(利润=出厂价﹣成本价).
①求一张薄板的利润与边长之间满足的函数关系式;
②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为的等边三角形的顶点分别在边,上当在边上运动时,随之在边上运动,等边三角形的形状保持不变,运动过程中,点到点的最大距离为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com