【题目】如图,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是( )
A.(1,0)
B.(-5,-1)
C.(1,0)或(-5,-1)
D.(1,0)或(-5,-2)
【答案】D
【解析】
试题分析:考查位似变换中对应点的坐标的变化规律.本题应分两种情况讨论,一种是E和C是对应点,G和A是对应点;二种是A和E是对应点,C和G是对应点.
解:∵正方形ABCD和正方形OEFG中A和点F的坐标分别为(3,2),(﹣1,﹣1),
∴E(﹣1,0)、G(0,﹣1)、D(5,2)、B(3,0)、C(5,0),
(1)当E和C是对应顶点,G和A是对应顶点时,位似中心就是EC与AG的交点,
设AG所在直线的解析式为y=kx+b(k≠0),
∴,解得.
∴此函数的解析式为y=x﹣1,与EC的交点坐标是(1,0);
(2)当A和E是对应顶点,C和G是对应顶点时,位似中心就是AE与CG的交点,
设AE所在直线的解析式为y=kx+b(k≠0),
,解得,故此一次函数的解析式为y=x+…①,
同理,设CG所在直线的解析式为y=kx+b(k≠0),
,解得,
故此直线的解析式为y=x﹣1…②
联立①②得
解得,故AE与CG的交点坐标是(﹣5,﹣2).
故答案为:(1,0)、(﹣5,﹣2).
科目:初中数学 来源: 题型:
【题目】如图,已知:正方形ABCD中,AB=8,点O为边AB上一动点,以点O为圆心,OB为半径的⊙O交边AD于点E(不与点A、D重合),EF⊥OE交边CD于点F.设BO=x,AE=y.
(1)求y关于x的函数关系式,并写出x的取值范围;
(2)在点O运动的过程中,△EFD的周长是否发生变化?如果发生变化,请用x的代数式表示△EFD的周长;如果不变化,请求出△EFD的周长;
(3)以点A为圆心,OA为半径作圆,在点O运动的过程中,讨论⊙O与⊙A的位置关系,并写出相应的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于D , OE⊥AC于E , OF⊥AB于F , 且AB=10cm,BC=8cm,AC=6cm,则点O到三边AB、AC、BC的距离为( ).
A.2cm,2cm,2cm
B.3cm,3cm,3cm
C.4cm,4cm,4cm
D.2cm,3cm,5cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com