【题目】由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=-2x+1000.
(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;
(2)若要使每月的利润为40000元,销售单价应定为多少元?
(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?
【答案】
(1)解:由题意得:w=(x-200)y=(x-200)(-2x+1000)=-2x2+1400x-200000
(2)解:令w=-2x2+1400x-200000=40000,
解得:x=300或x=400,
故要使每月的利润为40000元,销售单价应定为300或400元
(3)解:y=-2x2+1400x-200000=-2(x-350)2+45000,
当x=250时y=-2×2502+1400×250-200000=25000;
故最高利润为45000元,最低利润为25000元
【解析】(1)利用利润公式:单件利润销量,转换为自变量的代数式,可求出关系式;(2)把利润的具体值代入函数关系式,建立方程,可出销售单价;(3)把二次函数解析式配成顶点式,结合自变量的取值范围和图像,求出最值.
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.
(1)若由甲挑一名选手打第一场比赛,选中乙的概率是多少?(直接写出答案)
(2)任选两名同学打第一场,请用树状图或列表法求恰好选中甲、乙两位同学的概率。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,中,是的中点,将沿折叠后得到,且点在内部.将延长交于点.
(1)猜想并填空:__________(填“”、“”、“”);
(2)请证明你的猜想;
(3)如图2,当,设,,,求出、、三者之间的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)完成下面的推理说明:
已知:如图,∥,、分别平分和.
求证:∥.
证明:、分别平分和(已知),
, ( ).
∥( ),
( ).
( ).
(等式的性质).
∥( ).
(2)说出(1)的推理中运用了哪两个互逆的真命题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】节能灯在城市已基本普及,今年某省面向县级及农村地区推广,为相应号召,某商场计划用3800元购进节能灯120只,这两种节能灯的进价、售价如下表:
(1)求甲、乙两种节能灯各进多少只?
(2)全部售完120只节能灯后,该商场获利润多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0),二次函数 的图象抛物线经过A、C两点.
(1)求该二次函数的表达式;
(2)F,G分别为x轴、y轴上的动点,首尾顺次连接D、E、F、G构成四边形DEFG,求四边形DEFG周长的最小值;
(3)抛物线上是否存在点P,使△ODP的面积为8?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.
解: ,理由如下:
∵AB∥CD,
∴∠B=∠BCD,( )
∵∠B=70°,
∴∠BCD=70°,( )
∵∠BCE=20°,
∴∠ECD=50°,
∵∠CEF=130°,
∴ + =180°,
∴EF∥ ,( )
∴AB∥EF.( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以O为原点的直角坐标系中,A点的坐标为(0,3),直线x=-3交x轴于点B,P为线段AB上一动点,作直线PC⊥PO,交于直线x=﹣3于点C。过P点作直线MN平行于x轴,交y轴于M,交直线x=﹣3于点N。
(1)当点C在第二象限时,求证:△OPM≌△PCN;
(2)设AP长为m,以P、O、B、C为顶点的四边形的面积为S,请求出S与M之间的函数关系式,并写出自变量m的取值范围;
(3)当点P在线段AB上移动时,点C也随之在直线x=-3上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形的点P的坐标,如果不可能,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com