精英家教网 > 初中数学 > 题目详情

【题目】如图1中,的中点,将沿折叠后得到,且点内部.将延长交于点

1)猜想并填空:__________(填“”、“”、“”);

2)请证明你的猜想;

3)如图2,当,设,求出三者之间的关系.

【答案】1=;(2)详见解析;(3,证明详见解析

【解析】

1)猜想,然后再证明即可;

2)先证明∠EDF=EGF,再证明EG=ED,则等边对等角得:∠EGD=EDG,相减可得,从而证明

3)分别表示BFCFBC的长,证明ABCD是矩形得:∠C=90°,在RtBCF中,由勾股定理列式可得结论.

解:(1

故答案为:=

2)理由是:连接

由折叠得:

的中点,

四边形是平行四边形,

,即

3)证明:如图2,由(2)得:

由图可得:

由折叠可得:

中,

中,

中,由勾股定理得,

整理得:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,矩形的顶点的坐标分别为,且满足

1)矩形的顶点的坐标是( ).

2)若中点,沿折叠矩形使点落在处,折痕为,连并延长交,求直线的解析式.

3)将(2)中直线向左平移个单位交轴于为第二象限内的一个动点,且,求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图方格纸中每个小方格都是边长为1个单位的正方形若学校位置坐标为A21),图书馆位置坐标为B﹣1﹣2),解答以下问题

1)在图中标出平面直角坐标系的原点并建立直角坐标系

2)若体育馆位置坐标为C1﹣3),请在坐标系中标出体育馆的位置

3)顺次连接学校、图书馆、体育馆得到△ABC△ABC的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线ab,∠ABC100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?

(特殊化)

1)当∠140°,交点P在直线a、直线b之间,求∠EPB的度数;

2)当∠170°,求∠EPB的度数;

(一般化)

3)当∠1n°,求∠EPB的度数(直接用含n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知甲加工A型零件60个所用时间和乙加工B型零件80个所用时间相同.甲、乙两人每天共加工35个零件,设甲每天加工xA型零件.

1)直接写出乙每天加工的零件个数;(用含x的代数式表示)

2)求甲、乙每天各加工零件多少个?

3)根据市场预测,加工A型零件所获得的利润为m/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求甲、乙每天加工的零件所获得的总利润P(元)与m的函数关系式,并求P的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.

(1)画出ABC向右平移4个单位后得到的A1B1C1

(2)图中ACA1C1的关系是: _____________.

(3)画出ABCAB边上的高CD;垂足是D

(4)图中ABC的面积是_______________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=-2x+1000.
(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;
(2)若要使每月的利润为40000元,销售单价应定为多少元?
(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【探索新知】:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOBAOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB巧分线

1)一个角的平分线   这个角的巧分线;(填不是

2)如图2,若∠MPN=α,且射线PQ是∠MPN巧分线,则∠MPQ=   ;(用含α的代数式表示出所有可能的结果)

【深入研究】:如图2,若∠MPN=60°,且射线PQ绕点PPN位置开始,以每秒10°的速度逆时针旋转,当PQPN180°时停止旋转,旋转的时间为t秒.

3)当t为何值时,射线PM是∠QPN巧分线

4)若射线PM同时绕点P以每秒的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN巧分线t的值.

查看答案和解析>>

同步练习册答案