精英家教网 > 初中数学 > 题目详情

【题目】如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.
(1)求证:四边形ABCD是正方形;
(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.
(3)若EG=4,GF=6,BM=3 ,求AG、MN的长.

【答案】
(1)证明:∵△AEB由△AED翻折而成,

∴∠ABE=∠AGE=90°,∠BAE=∠EAG,AB=AG,

∵△AFD由△AFG翻折而成,

∴∠ADF=∠AGF=90°,∠DAF=∠FAG,AD=AG,

∵∠EAG+∠FAG=∠EAF=45°,

∴∠ABE=∠AGE=∠BAD=∠ADC=90°,

∴四边形ABCD是矩形,

∵AB=AD,

∴四边形ABCD是正方形


(2)解:MN2=ND2+DH2

理由:连接NH,

∵△ADH由△ABM旋转而成,

∴△ABM≌△ADH,

∴AM=AH,BM=DH,

∵由(1)∠BAD=90°,AB=AD,

∴∠ADH=∠ABD=45°,

∴∠NDH=90°,

∴△AMN≌△AHN,

∴MN=NH,

∴MN2=ND2+DH2


(3)解:设AG=BC=x,则EC=x﹣4,CF=x﹣6,

在Rt△ECF中,

∵CE2+CF2=EF2,即(x﹣4)2+(x﹣6)2=100,x1=12,x2=﹣2(舍去)

∴AG=12,

∵AG=AB=AD=12,∠BAD=90°,

∴BD= = =12

∵BM=3

∴MD=BD﹣BM=12 ﹣3 =9

设NH=y,

在Rt△NHD中,

∵NH2=ND2+DH2,即y2=(9 ﹣y)2+(3 2,解得y=5 ,即MN=5


【解析】(1)由图形翻折变换的性质可知∠ABE=∠AGE=∠BAD=∠ADC=90°,AB=AD即可得出结论;(2)连接NH,由△ABM≌△ADH,得AM=AH,BM=DH,∠ADH=∠ABD=45°,故∠NDH=90°,再证△AMN≌△AHN,得MN=NH,由勾股定理即可得出结论;(3)设AG=x,则EC=x﹣4,CF=x﹣6,在Rt△ECF中,利用勾股定理即可得出AG的值,同理可得出BD的长,设NH=y,在Rt△NHD,利用勾股定理即可得出MN的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DBC的中点,过D点的直线GFACF,交AC的平行线BGG点,DE⊥DF,交AB于点E,连结EGEF

1)求证:BGCF

2)请你判断BE+CFEF的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5 cm,且tan∠EFC=0.75,则矩形ABCD的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市实行中考改革,需要根据该市中学体能的实际情况重新制定中考体育标准.为此,抽取了50名初中毕业的女学生进行一分钟仰卧起坐次数测试.测试的情况绘制成表格如下:

(1)求这次抽样测试数据的平均数、众数和中位数;

(2)根据这一样本数据的特点,你认为该市中考女生一分钟仰卧起坐项目测试的合格标准应定为多少次较为合适?请简要说明理由;

(3)根据(2)中你认为合格的标准,试估计该市中考女生一分钟仰卧起坐项目测试的合格率是多少?

次数

6

12

15

18

20

25

27

30

32

35

36

人数

1

1

7

18

10

5

2

2

1

1

2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年11月的最后一个星期四是感恩节,小龙调查了初三年级部分同学在感恩节当天将以何种方式表达感谢帮助过自己的人.他将调查结果分为如下四类:A类﹣﹣当面致谢;B类﹣﹣打电话;C类﹣﹣发短信息或微信;D类﹣﹣写书信.他将调查结果绘制成如图不完整的扇形统计图和条形统计图: 请你根据图中提供的信息完成下列各题:

(1)补全条形统计图;
(2)在A类的同学中,有3人来自同一班级,其中有1人学过主持.现准备从他们3人中随机抽出两位同学主持感恩节主题班会课,请你用树状图或表格求出抽出的两人都没有学过主持的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半圆O的直径AB=4,P,Q是半圆O上的点,弦PQ的长为2,则 的长度之和为(
A.
B.
C.
D.π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,AC=5cmBC=12cm.动点PA点出发沿AC的路径向终点C运动;动点QB点出发沿BCA路径向终点A运动.点P和点Q分别以每秒1cm3cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过点PQPEMNEQFMNF.则点P运动时间为_____秒时,△PEC与△QFC全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算或化简

(1) (2)(2a2)(3ab25ab3)

(3)(x+3)(x7)x(x1) (4)(a2b+1)(a+2b+1)

(5)(3ab)2(2a+b)25a(ab) (6)(x+2y)2(x2y)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y= (x<0)的图象经过顶点B,则k的值为(
A.﹣12
B.﹣27
C.﹣32
D.﹣36

查看答案和解析>>

同步练习册答案