分析 通过证明△AEN,△DNM,△MCF,△FBE全等,先得出四边形ENMF是菱形,再证明四边形EFMN中一个内角为90°,从而得出四边形EFMN是正方形的结论.
解答 解:四边形EFMN是正方形.
证明:∵AE=BF=CM=DN,
∴AN=DM=CF=BE.
∵∠A=∠B=∠C=∠D=90°,
∴△AEN≌△DMN≌△CFM≌△BEF.
∴EF=EN=NM=MF,∠ENA=∠DMN.
∴四边形EFMN是菱形.
∵∠ENA=∠DMN,∠DMN+∠DNM=90°,
∴∠ENA+∠DNM=90°.
∴∠ENM=90°.
∴四边形EFMN是正方形.
点评 本题主要考查了正方形的性质和判定,全等三角形的判定和性质,熟练掌握正方形的判定和性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4.6×108 | B. | 46×108 | C. | 4.69 | D. | 4.6×109 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com