精英家教网 > 初中数学 > 题目详情

【题目】为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:
(1)此次共调查了多少人?
(2)求文学社团在扇形统计图中所占圆心角的度数;
(3)请将条形统计图补充完整;
(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?

【答案】
(1)解:80÷40%=200(人)

∴此次共调查200人.


(2)解: ×360°=108°.

∴文学社团在扇形统计图中所占圆心角的度数为108°.


(3)解:补全如图,


(4)解:1500×40%=600(人).

∴估计该校喜欢体育类社团的学生有600人.


【解析】(1)由条形统计图中“体育”的人数和其在扇形统计图中所占的比可求得总人数;
(2)由条形统计图可知文学社团的人数,从而可得其所占的百分比,则其在扇形统计图中所占圆心角的度数=所占的百分比×360°计算可得;
(3)先求出其他所占的百分比,用总人数乘以其百分比可得其他的人数,可补全条形统计图;
(4)用喜欢体育类社团的百分比乘以1500可求得答案.
【考点精析】解答此题的关键在于理解扇形统计图的相关知识,掌握能清楚地表示出各部分在总体中所占的百分比.但是不能清楚地表示出每个项目的具体数目以及事物的变化情况,以及对条形统计图的理解,了解能清楚地表示出每个项目的具体数目,但是不能清楚地表示出各个部分在总体中所占的百分比以及事物的变化情况.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.

(1)当参加旅游的人数不超过10人时,人均收费为元;
(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是你平均每天参加体育活动的时间是多少,共有4个选项:A1.5小时以上;B11.5小时;C0.51小时;D0.5小时以下.图12是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:

1)本次一共调查了多少名学生?

2)在图1中将选项B的部分补充完整;

3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在市区内,我市乘坐出租车的价格(元)与路程(km)的函数关系图象如图所示.

(1)请你根据图象写出两条信息;

(2)小明从学校出发乘坐出租车回家用了13元,求学校离小明家的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下列推理及所注明的理由都正确的是:(

A. 因为DEBC,所以∠1=∠C(同位角相等,两直线平行)

B. 因为∠2=∠3,所以DEBC(两直线平行,内错角相等)

C. 因为DEBC,所以∠2=∠3(两直线平行,内错角相等)

D. 因为∠1=∠C,所以DEBC(两直线平行,同位角相等)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).

(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);
(2)当点P不与点B重合时,求点F落在边BC上时x的值;
(3)当0<x<2时,求y关于x的函数解析式;
(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系xOy中,正比例函数y= x的图象经过点A,点A的纵坐标为4,反比例函数y= 的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:

(1)这个反比例函数的解析式;
(2)直线AB的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图1是一个长为2x、宽为2y的长方形,沿图中虚线用剪刀剪成四个完全相同的小长方形,然后按图2所示拼成一个正方形.

(1)你认为图2中的阴影部分的正方形的边长等于
(2)试用两种不同的方法求图2中阴影部分的面积.
方法1: 方法2:
(3)根据图2你能写出下列三个代数式之间的等量关系吗?
代数式:(x+y)2,(x-y)2,4xy

(4)根据(3)题中的等量关系,解决如下问题:
x+y=4,xy=3,则(x-y)2=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为平面直角坐标系的原点,点Ax轴上,△AOC是边长为2的等边三角形.

(1)写出△AOC的顶点C的坐标:_____

(2)将△AOC沿x轴向右平移得到△OBD,则平移的距离是_____

(3)将△AOC绕原点O顺时针旋转得到△OBD,则旋转角可以是_____

(4)连接AD,交OC于点E,求∠AEO的度数.

查看答案和解析>>

同步练习册答案