精英家教网 > 初中数学 > 题目详情

【题目】(满分10分)如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC,BC.

(1)试判断直线CD与⊙O的位置关系,并说明理由;

(2)若AD=2,AC=,求AB的长.

【答案】(1)相切;(2)3.

【解析】

试题分析:(1)连接OC,由C为的中点,得到∠1=∠2,等量代换得到∠2=∠ACO,根据平行线的性质得到OC⊥CD,即可得到结论;

(2)连接CE,由勾股定理得到CD的长,根据切割线定理得到=ADDE,根据勾股定理得到CE的长,由圆周角定理得到∠ACB=90°,即可得到结论.

试题解析:(1)相切,连接OC,∵C为的中点,∴∠1=∠2,∵OA=OC,∴∠1=∠ACO,∴∠2=∠ACO,∴AD∥OC,∵CD⊥AD,∴OC⊥CD,∴直线CD与⊙O相切;

(2)方法1:连接CE,∵AD=2,AC=,∵∠ADC=90°,∴CD==,∵CD是⊙O的切线,∴=ADDE,∴DE=1,∴CE==,∵C为的中点,∴BC=CE=,∵AB为⊙O的直径,∴∠ACB=90°,∴AB==3.

方法2:∵∠DCA=∠B,易得△ADC∽△ACB,∴,∴AB=3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(﹣2)×3的结果是(
A.﹣5
B.1
C.﹣6
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在面积为12的平行四边形ABCD中,过点A作直线BC的垂线交直线BC于点E,过点A作直线CD的垂线交直线CD于点F,若AB=4,BC=6,则CE+CF的值为.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′OP=,则称点P′是点P关于⊙O的“反演点”.

如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点M(﹣3,﹣5)是由N先向上平移4个单位,再向左平移3个单位而得到,则点N的坐标为(
A.(0,﹣9)
B.(﹣6,﹣1)
C.(1,﹣2)
D.(1,﹣8)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读填空:请你阅读芳芳的说理过程并填出理由:
(1)如图1,已知AB∥CD.
求证:∠BAE+∠DCE=∠AEC.
理由:作EF∥AB,则有EF∥CD(
∴∠1=∠BAE,∠2=∠DCE()
∴∠AEC=∠1+∠2=∠BAE+∠DCE()
思维拓展:

(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠FAE=m°,∠ABC=n°,求∠BED的度数.(用含m、n的式子表示)

(3)将图2中的线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,得到图3,直接写出∠BED的度数是(用含m、n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面文字:
对于(﹣5 )+(﹣9 )+17 +(﹣3
可以如下计算:
原式=[(﹣5)+(﹣ )]+[(﹣9)+(﹣ )]+(17+ )+[(﹣3)+(﹣ )]
=[(一5)+(﹣9)+17+(一3)]+[(﹣ )+(﹣ )+ +(﹣ )]
=0+(﹣1
=﹣1
上面这种方法叫拆项法,你看懂了吗?
仿照上面的方法,请你计算:(﹣2000 )+(﹣1999 )+4000 +(﹣1 ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读下列材料,并完成相应的任务:

阿基米德折弦定理

阿基米德(archimedes,公元前287﹣公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并成为三大数学王子.

阿拉伯Al﹣Binmi(973﹣1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al﹣Binmi译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.

阿基米德折弦定理:如图1,AB和BC是O的两条弦(即折线ABC是圆的一条折弦),BCAB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.

M是的中点,MA=MC.

任务:

(1)请按照上面的证明思路,写出该证明的剩余部分;

(2)填空:如图3,已知等边ABC内接于O,AB=2,D为上一点,ABD=45°,AEBD于点E,则BDC的周长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=x+b的图象与反比例函数(k为常数,k≠0)的图象交于点A(﹣1,4)和点B(a,1).

(1)求反比例函数的表达式和a、b的值;

(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.

查看答案和解析>>

同步练习册答案