【题目】在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,
(1)求高台A比矮台B高多少米?
(2)求旗杆的高度OM;
(3)玛丽在荡绳索过程中离地面的最低点的高度MN.
【答案】(1)7米;(2)OM=15m;(3)玛丽在荡绳索过程中离地面的最低点的高度MN为2米.
【解析】试题分析:(1)作差.(2) 作AE⊥OM,BF⊥OM,证明在△AOE和△OBF相似,可以计算出OE+OF长度,最后算出OM长度.(3)利用勾股定理求出半径长度,作差求MN长度.
试题解析:
(1)10-3=7(米).
(2)作AE⊥OM于E,,BF⊥OM与F,
∵∠AOE+∠BOF=∠BOF+∠OBF=90°,
∴∠AOE=∠OBF,
在△AOE和△OBF中,
,
∴△AOE≌△OBF(AAS),
∴OE=BF,AE=OF,
即OE+OF=AE+BF=CD=17(m)
∵EF=EM﹣FM=AC﹣BD=10﹣3=7(m),
∴2EO+EF=17,
则2EO=10,
所以OE=5m,OF=12m,
所以OM=OF+FM=15m.
(3)由勾股定理得ON=OA=13,
所以MN=15﹣13=2(m).
答:玛丽在荡绳索过程中离地面的最低点的高度MN为2米.
科目:初中数学 来源: 题型:
【题目】动画片《喜羊羊与灰太狼》中,“喜羊羊”和“灰太狼”每天都是斗来斗去,每次都是以“灰太狼”的:“我还会回来的!”结束,但有一次,由于“喜羊羊”的疏忽大意,“喜羊羊”被“灰太狼”抓住了,为了让“喜羊羊”心甘情愿地被他吃掉,“灰太狼”决定把自己苦想多日才解决的问题“已知,求x-2 0152的值”让“喜羊羊”在5分钟之内完成,如果能完成,则放了“喜羊羊”,否则就会被吃掉.“喜羊羊”想了一会,就把问题解决了,“灰太狼”只好把“喜羊羊”放了,那么你知道“喜羊羊”是怎样做的吗?请你完成.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分10分)抛物线与x轴交与,两点,
(1)求该抛物线的解析式;
(2)设(1)中的抛物线与y轴交于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2015年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下图能反映y与x的函数关系式的大致图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两城市为了解决空气质量污染问题,对城市及其周边的环境污染进行了综合治理.在治理过程中,环保部门每月初对两个城市的空气质量进行监测,连续10个月的空气污染指数如下图所示.其中,空气污染指≤50时,空气质量为优;50<空气污染指数≤100时,空气质量为良;100<空气污染指数≤150时,空气质量为轻微污染.
(1)请填写下表:
平均数 | 方差 | 中位数 | 空气质量为优的次数 | |
甲 | 80 | 1 | ||
乙 | 1060 | 80 |
(2)请回答下面问题:
①从平均数和中位数来分析,甲、乙两个城市的空气质量;
②从平均数和方差来分析,甲、乙两个城市的空气质量变化情况;
③根据折线图上两城市的空气污染指数的走势及优的情况来分析两城市治理环境污染的效果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列等式:
第1个等式:a1= = ×(1﹣ );
第2个等式:a2= = ×( ﹣ );
第3个等式:a3= = ×( ﹣ );
第4个等式:a4= = ×( ﹣ );
…
请解答下列问题:
(1)按以上规律列出第5个等式:a5=;
(2)用含有n的代数式表示第n个等式:an==(n为正整数);
(3)求a1+a2+a3+a4+…+a100的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com