精英家教网 > 初中数学 > 题目详情

【题目】如图,已知一张长方形纸片,).将这张纸片沿着过点的折痕翻折,使点落在边上的点,折痕交 于点,将折叠后的纸片再次沿着另一条过点的折痕翻折,点恰好与点重合,此时折痕交于点

1)在图中确定点、点和点的位置;

2)联结 等于多少°

3)用含有的代数式表示线段的长.

【答案】1)点F、点E和点G的位置如图所示;见解析;(245;(3.

【解析】

依题意先画出图形,再利用折叠的性质来得出等量关系,依次求解.

1)点F、点E和点G的位置如图所示;

2)由折叠的性质得:∠DAE=EAB

∵四边形ABCD是矩形,

∴∠BAD=DAE+EAB=90°

∴∠EAB=45°

3)由折叠的性质得:DG=EG

∵∠ABE=90°,∠EAB=45°

∴∠AEB=45°

BE=AB=a

CE=b-a

CG=x,则DG=EG=a-x

RtCEG中,CG2+CE2=EG2

x2+b-a2=a-x2

解得:x=

DG=a-x=a-=a-b+.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,Am,0),B(0,n,且mn满足m﹣2)20.

(1)SABO

(2)Cy轴负半轴上一点,BDCACA的延长线于点D,若∠BAD=∠CAO,求的值;

(3)Ey轴负半轴上一点,OHAEHHOAB的延长线交于点FGy轴正半轴上一点,且BGOEFGEA的延长线交于点P,求证:点P的纵坐标是定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以正方形ABCD的边AD作等边ADE,则∠BEC的度数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:直线l:y=﹣x,点A1的坐标为(﹣1,0),过点A1作x轴的垂线交直线l于点B1 , 以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2 , 再过点A2作x轴的垂线交直线l于点B2 , 以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3…按此作法进行去,点A2016的坐标为( )

A.(﹣22016 , 0)
B.(﹣22017 , 0)
C.(﹣21008 , 0)
D.(﹣21007 , 0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形AOCB的边长为4,反比例函数y= (k≠0,且k为常数)的图象过点E,且SAOE=3SOBE
(1)求k的值;
(2)反比例函数图象与线段BC交于点D,直线y= x+b过点D与线段AB交于点F,延长OF交反比例函数y= (x<0)的图象于点N,求N点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC的边长为 1,CDAB 于点 DE 为射线 CD 上一点,以BE为边在 BE 左侧作等边△BEF,则DF的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知实数x、y满足2x+3y=1.

(1)用含有x的代数式表示y;

(2)若实数y满足y1,求x的取值范围;

(3)若实数x、y满足x﹣1,y,且2x﹣3y=k,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ACB=90°,AC=BC,ABC的高CD与角平分线AE相交点F,过点CCHAEG,交ABH.下列说法:①∠BCH=CAE;DF=EF;CE=BH;SABE=2SACECF=DF.正确的是_____

查看答案和解析>>

同步练习册答案