【题目】如图1,A(m,0),B(0,n),且m,n满足(m﹣2)20.
(1)求S△ABO;
(2)点C为y轴负半轴上一点,BD⊥CA交CA的延长线于点D,若∠BAD=∠CAO,求的值;
(3)点E为y轴负半轴上一点,OH⊥AE于H,HO,AB的延长线交于点F,G为y轴正半轴上一点,且BG=OE,FG,EA的延长线交于点P,求证:点P的纵坐标是定值.
【答案】(1)2;(2);(3)1
【解析】
(1)利用非负性得出m,n值,即可得出点A,B坐标,最后用三角形的面积公式即可;
(2)先求出先求出OC,进而得出22.5°的正切值,再求出AC的平方,再求出BD的平方即可;
(3)设出点E坐标,用待定系数法和直线交点坐标即可确定出点P坐标即可得出结论.
(1)∵(m﹣2)20,∴m=n=2,∴A(2,0),B(0,2),∴OA=2,OB=2,∴S△AOBOA×OB=2;
(2)如图1,在OC上取一点E,使OE=OA=2,由(1)知,OA=OB=2,∴∠OAB=45°,∴AE=2.
∵∠BAD=∠CAO,∴∠BAD=∠CAO=67.5°.
∵∠ADB=∠AOC=90°,∴∠ABD=∠ACO=22.5°,∴CE=AE=2,∴OC=OE+CE=2(1),∴AC2=OA2+OC2=4+4(1)2=8(2),tan∠ACO1.
在Rt△ABD中,tan∠ABD=tan22.5°=tan∠ACO1,∴AD=(1)BD.
在Rt△AOB中,OA=OB=2,∴AB=2,根据勾股定理得:AD2+BD2=AB2,∴[(1)BD]2+BD2=8,∴BD2=2(2),,∴;
(3)如图2,由(1)知,A(2,0),B(0,2),∴直线AB解析式为y=﹣x+2①,设E(0,a),∴OE=|a|=﹣a.
∵BG=OE,∴BG=﹣a,∴OG=2﹣a,∴G(0,2﹣a).
∵A(2,0),E(0,a),∴直线AE解析式为yx+a②.
∵OH⊥AE,∴直线OH解析式为yx③,联立①③得:x,y,∴F().
∵G(0,2﹣a),∴直线FG的解析式为yx+2﹣a④,联立②④得:x,y=1,∴P(,1),∴点P的纵坐标是定值,定值为1.
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.
(1)求证:BE是⊙O的切线;
(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BGBA=48,FG= ,DF=2BF,求AH的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究题
(1)阅读理解:
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E,使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断.
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连结EF.请判断BE+CF与EF的大小关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠ECF=90°,线段 AB 的端点分别在 CE 和 CF 上,BD 平分∠CBA,并与∠CAB 的外角平分线 AG 所在的直线交于一点 D.
(1)∠D 与∠C 有怎样的数量关系?(直接写出关系及大小)
(2)点 A 在射线 CE 上运动,(不与点 C 重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】只给定三角形的两个元素,画出的三角形的形状和大小是不确定的,在下列给定的两个条件上增加一个“AB=5cm”的条件后,所画出的三角形的形状和大小仍不能完全确定的是( )
A. , B. ,
C. , D. ,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB∥CD,点E为AB,CD之外任意一点.
(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;
(2)如图2,探究∠CDE与∠B,∠E的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑩个图形中小圆圈的个数为( )
A. 24 B. 27 C. 30 D. 33
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一张长方形纸片,,().将这张纸片沿着过点的折痕翻折,使点落在边上的点,折痕交 于点,将折叠后的纸片再次沿着另一条过点的折痕翻折,点恰好与点重合,此时折痕交于点.
(1)在图中确定点、点和点的位置;
(2)联结, 则等于多少°;
(3)用含有、的代数式表示线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com