精英家教网 > 初中数学 > 题目详情

【题目】如图,∠ECF=90°,线段 AB 的端点分别在 CE CF BD 平分CBA并与CAB 的外角平分线 AG 所在的直线交于一点 D

(1)∠D C 有怎样的数量关系?(直接写出关系及大小)

(2) A 在射线 CE 上运动(不与点 C 重合)时其它条件不变,(1)中结论还成立吗?说说你的理由

【答案】(1)见解析;(2)见解析.

【解析】

(1)根据角平分线的性质、外角的性质、三角形内角和定理整理即可得出答案

(2)根据(1)中结论即可推理得出答案

1)∠C=2∠D :∠D=45°.

BD平分∠CBAAG平分∠EAB,∴∠EAB=2∠GAB,∠ABC=2∠DBA

∵∠CAB=180°﹣2∠GAB,∠BAC+∠ABC=90°,180°﹣2∠GAB+2∠DBA=90°,整理得出∠GAB﹣∠DBA=45°,∴∠DC=45°;

(2)当A在射线CE上运动(不与点C重合)时其它条件不变,(1)中结论还成立

∵∠CAB+∠ABC=∠C=90°,不论ACE上如何运动只要不与C点重合这个关系式都是不变的整理这个式子:∠CAB=180°﹣2∠GAB,∠ABC=2∠DBA:180°﹣2∠GAB+2∠DBA=90°,整理得:∠GAB﹣∠DBA=45恒定不变:∠D=45°的结论不变,∴∠C=2∠D恒成立

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.
求证:a2+b2=5c2
该同学仔细分析后,得到如下解题思路:
先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故 ,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证

(1)请你根据以上解题思路帮尤秀同学写出证明过程.
(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC 中,AD 是高,∠BAD=60°,∠CAD=20°,AE 平分∠BAC,则∠EAD 的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角三角形ABC中,∠BAC=90°,AC=8 cm,AD⊥BC于点D.点P从点A出发,沿A→C方向以 cm/s的速度运动到点C停止.在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2

(1)当点M落在AB上时,求x的值;
(2)当点M落在AD上时,PM与CD之间的数量关系是 , 此时x的值是
(3)求y关于x的函数解析式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,Am,0),B(0,n,且mn满足m﹣2)20.

(1)SABO

(2)Cy轴负半轴上一点,BDCACA的延长线于点D,若∠BAD=∠CAO,求的值;

(3)Ey轴负半轴上一点,OHAEHHOAB的延长线交于点FGy轴正半轴上一点,且BGOEFGEA的延长线交于点P,求证:点P的纵坐标是定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,射线OA的方向是北偏东20,射线OB的方向是北偏西40ODOB的反向延长线,OC是∠AOD的平分线。

1)求∠BOC的度数;

2)求出射线OC的方向。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B的坐标分别为(4,0)、(0,8),点C是线段OB上一动点,点E在x轴正半轴上,四边形OEDC是矩形,且OE=2OC.设OE=t(t>0),矩形OEDC与△AOB重合部分的面积为S.

根据上述条件,回答下列问题:
(1)当矩形OEDC的顶点D在直线AB上时,求t的值;
(2)当t=4时,求S的值;
(3)直接写出S与t的函数关系式(不必写出解题过程);
(4)若S=12,则t=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为

查看答案和解析>>

同步练习册答案