精英家教网 > 初中数学 > 题目详情

【题目】在△ABC 中,AD 是高,∠BAD=60°,∠CAD=20°,AE 平分∠BAC,则∠EAD 的度数为_____

【答案】20°或 40°

【解析】

分∠C为锐角或钝角两种情况当∠C为锐角时如图所示,∠EAD=∠BAD﹣∠BAE当∠C为钝角时如图所示,∠EAD=∠DAC+∠EAC分别求解即可

当∠C为锐角时如下图所示

∵∠BAC=∠BAD+∠CAD=80°,AE平分∠BAC,∴∠BAE80°=40°,∴∠EAD=∠BAD﹣∠BAE=60°-40°=20°.

当∠C为钝角时如下图所示

BAC=∠BAD﹣∠CAD=60°﹣20°=40°.

AE平分∠BAC,∴∠CAE=20°,:∠EAD=∠DAC+∠EAC=40°.

答案为20°或40°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,O为AC中点,EF过点O且EF⊥AC分别交DC于点F,交AB于点E,点G是AE中点且∠AOG=30°,给出以下结论: ①∠AFC=120°;
②△AEF是等边三角形;
③AC=3OG;
④SAOG= SABC
其中正确的是 . (把所有正确结论的序号都选上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD外取一点E,连接AEBEDE.过点AAE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②B到直线AE的距离为;③EBED;④SAPD+SAPB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕

折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图2);(2)以过点E

直线为折痕折叠纸片,使点A落在BC边上,折痕EFAD边于点F(如图3);(3)将纸

片收展平,那么∠AFE的度数为 ( )

A. 60° B. 67.5° C. 72° D. 75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究题
(1)阅读理解:
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E,使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断.

(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连结EF.请判断BE+CF与EF的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠ECF=90°,线段 AB 的端点分别在 CE CF BD 平分CBA并与CAB 的外角平分线 AG 所在的直线交于一点 D

(1)∠D C 有怎样的数量关系?(直接写出关系及大小)

(2) A 在射线 CE 上运动(不与点 C 重合)时其它条件不变,(1)中结论还成立吗?说说你的理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABCD,点EAB,CD之外任意一点.

(1)如图1,探究∠BED与∠B,D的数量关系,并说明理由;

(2)如图2,探究∠CDE与∠B,E的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于__________

查看答案和解析>>

同步练习册答案