精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形OABC中,BCAO,AOC=90°,A,B的坐标分别为(5,0),(2,6),点DAB上一点,且,双曲线y=(k>0)经过点D,交BC于点E

(1)求双曲线的解析式;

(2)求四边形ODBE的面积.

【答案】(1)y= (2)12

【解析】分析:(1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA-AN=4,得到D点坐标为(4,2),然后把D点坐标代入y=中求出k的值即可得到反比例函数解析式;

(2)根据反比例函数k的几何意义和S四边形ODBE=S梯形OABC-SOCE-SOAD进行计算.

详解:(1)作BMx轴于M,作DNx轴于N,如图,

∵点A,B的坐标分别为(5,0),(2,6),

BC=OM=2,BM=OC=6,AM=3,

DNBM,

∴△ADN∽△ABM,

,即

DN=2,AN=1,

ON=OA﹣AN=4,

D点坐标为(4,2),

D(4,2)代入y=k=2×4=8,

∴反比例函数解析式为y=

(2)S四边形ODBE=S梯形OABC﹣SOCE﹣SOAD

=×(2+5)×6﹣×|8|﹣×5×2

=12.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO,射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为1cm/s.P、Q同时出发,设运动时间是t(s).

(1)当点P在MO上运动时,PO= cm (用含t的代数式表示);

(2)当点P在MO上运动时,t为何值,能使OP=OQ?

(3)若点Q运动到距离O点16cm的点N处停止,在点Q停止运动前,点P能否追上点Q?如果能,求出t的值;如果不能,请说出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连结BO,若SAOB=4.

(1)求该反比例函数的解析式和直线AB的解析式;

(2)若直线AB与y轴的交点为C,求OCB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】11·漳州)(满分8分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:

1)请将以上两幅统计图补充完整;

2)若一般优秀均被视为达标成绩,则该校被抽取的学生中有_ ▲ 人达标;

3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请根据图中提供的信息,回答下列问题。

1)一个暖瓶与一个水杯分别是多少元?

2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角三角形ABC中(∠C=90°),放置边长分别为34x的三个正方形,则x的值为( )

A. 5 B. 6 C. 7 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y=(1≤x≤8)的图象记为曲线C1C1沿y轴翻折,得到曲线C2直线y=-x+b C1 ,C2一共只有两个公共点,则b的取值范围是______________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,∠ADC的平分线交直线BC于点E,交直线AB于点F

1)如图①,证明:BEBF

2)如图②,若∠ADC90°OAC的中点,GEF的中点,试探究OGAC的位置关系,并说明理由.

3)如图③,若∠ADC60°,过点EDC的平行线,并在其上取一点K(与点F位于直线BC的同侧),使EKBF,连接CKHCK的中点,试探究线段OHHA之间的数量关系,并对结论给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=2∠DAB=60°,EAD边的中点,点MAB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MDAN.

1)求证:四边形AMDN是平行四边形;

2)填空:AM的值为 时,四边形AMDN是矩形;AM的值为 时,四边形AMDN是菱形。

查看答案和解析>>

同步练习册答案